Advertisement

Animal Weight Is an Important Variable for Reliable Cuprizone-Induced Demyelination

  • Patrizia Leopold
  • Christoph Schmitz
  • Markus KippEmail author
Article
  • 51 Downloads

Abstract

An elegant model to study mechanisms operant during oligodendrocyte degeneration and subsequent demyelination is the cuprizone model. In that model, mice are intoxicated with the copper chelation agent cuprizone which results in early oligodendrocyte stress, oligodendrocyte apoptosis, and, finally, demyelination. Here, we systematically investigated to what extent the animals’ weight at the beginning of the cuprizone intoxication period is critical for the reproducibility of the cuprizone-induced pathology. We can demonstrate that a negative correlation exists between the two variables “extent of cuprizone-induced demyelination” and “starting weight.” Demyelination and microglia activation were more severe in low weight compared to heavy weight mice. These findings are highly relevant for the experimental design using the cuprizone model.

Keywords

Cuprizone Oligodendrocyte degeneration Weight Correlation 

Notes

Acknowledgements

The technical support from S. Wübbel, B. Aschauer, and A. Baltruschat is acknowledged.

Funding Information

This study was financially supported by the Deutsche Forschungsgemeinschaft (KI 1469/8-1).

Compliance with Ethical Standards

All experiments were formally approved by the Regierung Oberbayern (reference number 55.2-154-2532-73-15).

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814.  https://doi.org/10.1002/glia.20806 CrossRefGoogle Scholar
  2. Behrangi N, Fischbach F, Kipp M (2019) Mechanism of siponimod: anti-inflammatory and neuroprotective mode of action Cells 8 doi: https://doi.org/10.3390/cells8010024
  3. Chrzanowski U, Schmitz C, Horn-Bochtler A, Nack A, Kipp M (2019) Evaluation strategy to determine reliable demyelination in the cuprizone model. Metab Brain Dis 34:681–685.  https://doi.org/10.1007/s11011-018-0375-3 CrossRefGoogle Scholar
  4. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S, Kipp M (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60:1468–1480.  https://doi.org/10.1002/glia.22367 CrossRefGoogle Scholar
  5. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallières L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M (2015) CXCL10 triggers early microglial activation in the cuprizone model. Journal of immunology (Baltimore, Md : 1950) 194:3400–3413.  https://doi.org/10.4049/jimmunol.1401459 CrossRefGoogle Scholar
  6. Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beißel C, van Heuvel Y, Goswami A, Weis J, Denecke B, Schmitz C, Hochstrasser T, Nyamoya S, Victor M, Beyer C, Kipp M (2018) Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 67:263–276.  https://doi.org/10.1002/glia.23538 CrossRefGoogle Scholar
  7. Funfschilling U et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521.  https://doi.org/10.1038/nature11007 CrossRefGoogle Scholar
  8. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175.  https://doi.org/10.1038/5532 CrossRefGoogle Scholar
  9. Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, Kipp M (2013) Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol 33:1087–1098.  https://doi.org/10.1007/s10571-013-9975-y CrossRefGoogle Scholar
  10. Hesse A, Wagner M, Held J, Brück W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37:362–369.  https://doi.org/10.1016/j.nbd.2009.10.016 CrossRefGoogle Scholar
  11. Hochstrasser T, Exner GL, Nyamoya S, Schmitz C, Kipp M (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 61:617–624.  https://doi.org/10.1007/s12031-017-0903-3 CrossRefGoogle Scholar
  12. Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain pathology (Zurich, Switzerland) 27:123–137.  https://doi.org/10.1111/bpa.12454 CrossRefGoogle Scholar
  13. Lassmann H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Schriftenreihe Neurologie 25:1–135Google Scholar
  14. Lassmann H, van Horssen J (2016) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta 1862:506–510.  https://doi.org/10.1016/j.bbadis.2015.09.018 CrossRefGoogle Scholar
  15. Licht-Mayer S, Wimmer I, Traffehn S, Metz I, Brück W, Bauer J, Bradl M, Lassmann H (2015) Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol 130:263–277.  https://doi.org/10.1007/s00401-015-1452-x CrossRefGoogle Scholar
  16. Love S (1988) Cuprizone neurotoxicity in the rat: morphologic observations. J Neurol Sci 84:223–237CrossRefGoogle Scholar
  17. Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain : a journal of neurology 131:1722–1735.  https://doi.org/10.1093/brain/awn105 CrossRefGoogle Scholar
  18. Moore S, Patel R, Hannsun G, Yang J, Tiwari-Woodruff SK (2013) Sex chromosome complement influences functional callosal myelination. Neuroscience 245:166–178.  https://doi.org/10.1016/j.neuroscience.2013.04.017 CrossRefGoogle Scholar
  19. Nack A, Brendel M, Nedelcu J, Daerr M, Nyamoya S, Beyer C, Focke C, Deussing M, Hoornaert C, Ponsaerts P, Schmitz C, Bartenstein P, Rominger A, Kipp M (2019) Expression of translocator protein and [18F]-GE180 ligand uptake in multiple sclerosis animal models. Cells 8.  https://doi.org/10.3390/cells8020094
  20. Nyamoya S, Leopold P, Becker B, Beyer C, Hustadt F, Schmitz C, Michel A, Kipp M (2018) G-protein-coupled receptor Gpr17 expression in two multiple sclerosis remyelination models. Mol Neurobiol 56:1109–1123.  https://doi.org/10.1007/s12035-018-1146-1 CrossRefGoogle Scholar
  21. Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA (2018) Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anatomy & cell biology 51:119–127.  https://doi.org/10.5115/acb.2018.51.2.119 CrossRefGoogle Scholar
  22. Pasquini LA, Calatayud CA, Bertone Una AL, Millet V, Pasquini JM, Soto EF (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292.  https://doi.org/10.1007/s11064-006-9165-0 CrossRefGoogle Scholar
  23. Patel R, Moore S, Crawford DK, Hannsun G, Sasidhar MV, Tan K, Molaie D, Tiwari-Woodruff SK (2013) Attenuation of corpus callosum axon myelination and remyelination in the absence of circulating sex hormones. Brain pathology (Zurich, Switzerland) 23:462–475.  https://doi.org/10.1111/bpa.12029 CrossRefGoogle Scholar
  24. Raine CS, Scheinberg L, Waltz JM (1981) Multiple sclerosis. Oligodendrocyte survival and proliferation in an active established lesion. Laboratory investigation; a journal of technical methods and pathology 45:534–546Google Scholar
  25. Schmidt T, Awad H, Slowik A, Beyer C, Kipp M, Clarner T (2013) Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci 49:80–88.  https://doi.org/10.1007/s12031-012-9896-0 CrossRefGoogle Scholar
  26. Scolding NJ, Jones J, Compston DA, Morgan BP (1990) Oligodendrocyte susceptibility to injury by T-cell perforin. Immunology 70:6–10Google Scholar
  27. Taylor LC, Gilmore W, Matsushima GK (2009) SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain pathology (Zurich, Switzerland) 19:467–479.  https://doi.org/10.1111/j.1750-3639.2008.00230.x CrossRefGoogle Scholar
  28. Valeiras B, Rosato Siri MV, Codagnone M, Reines A, Pasquini JM (2014) Gender influence on schizophrenia-relevant abnormalities in a cuprizone demyelination model. Glia 62:1629–1644.  https://doi.org/10.1002/glia.22704 CrossRefGoogle Scholar
  29. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26:2–10CrossRefGoogle Scholar
  30. Xing B, Brink LE, Maers K, Sullivan ML, Bodnar RJ, Stolz DB, Cambi F (2018) Conditional depletion of GSK3b protects oligodendrocytes from apoptosis and lessens demyelination in the acute cuprizone model. Glia 66:1999–2012.  https://doi.org/10.1002/glia.23453 CrossRefGoogle Scholar
  31. Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51:567–572.  https://doi.org/10.1007/s12031-013-0026-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of AnatomyRostock University Medical CenterRostockGermany
  2. 2.Department of Anatomy IILudwig-Maximilians-University of MunichMunichGermany

Personalised recommendations