Advertisement

The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach

  • Thais Guimarães Martins Nery
  • Esdras Matheus Silva
  • Raphael Tavares
  • Fabio Passetti
Article

Abstract

Alzheimer’s disease, Parkinson’s disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.

Keywords

Nervous system diseases Proteogenomics Proteoform Proteomics RNA-Seq 

Notes

Funding information

This work was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539(7628):207–216PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aikawa T, Holm M, Kanekiyo T (2018) ABCA7 and pathogenic pathways of Alzheimer’s disease. Brain Sci 8:27PubMedCentralCrossRefGoogle Scholar
  3. Altamura C, Fagiolini A, Galderisi S, Rocca P, Rossi A (2014) Schizophrenia today: epidemiology, diagnosis, course and models of care. J Psychopathol 20:223–243Google Scholar
  4. Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14(3):367–429CrossRefGoogle Scholar
  5. Amoroso N, Monaco A, Tangaro S, Neuroimaging Initiative AD (2017) Topological measurements of DWI tractography for Alzheimer’s disease detection. Comput Math Methods Med 2017:5271627PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, Hokayem JE, Myers AJ (2012) Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res 11(6):3053–3067PubMedPubMedCentralCrossRefGoogle Scholar
  7. Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, Nilsson LG, Kauppi K, Adolfsson R, Eriksson E, Sundet K, Djurovic S, Espeseth T, Nyberg L, Steen VM, Andreassen OA, Le Hellard S (2017) A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun 61:209–216PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin C, Ishizuka K, Sawa A, Ramos A, Rosa I, Garćıa A, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Jarvelin M, Hennah W, Korth C (2012) Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 21(20):4406–4418PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bai B, Hales CM, Chen P, Gozal Y, Dammer EB, Fritz JJ (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci 110(41):16562–16567PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barbosa EB, Vidotto A, Polachini GM, Henrique T, Marqui ABT, Tajara EH (2012) Proteômica: metodologias e aplicações no estudo de doenças humanas. Rev Assoc Med Bras 58(3):366–375PubMedPubMedCentralGoogle Scholar
  11. Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES (2000) Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res 10(7):950–958PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cacace R, Van den Bossche T, Engelborghs S, Geerts N, Laureys A et al (2015) Rare variants in PLD3 do not affect risk for early-onset Alzheimer disease in a European Consortium Cohort. Hum Mutat 36(12):1226–1235PubMedPubMedCentralCrossRefGoogle Scholar
  13. Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539(7628):187–196PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cardno AG, Gottesman II (2002) Twin studies of schizophrenia: from bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet 97(1):12–17CrossRefGoogle Scholar
  15. Chang RYK, Nouwens AS, Dodd PR, Etheridge N (2013) The synaptic proteome in Alzheimer’s disease. Alzheimers Dement 9:499–511PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chatterjee P, Roy D (2017) Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun 484(3):557–564PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chavan BS, Kaur G, Gupta D, Aneja J (2018) A prospective study to evaluate the effect of CYP2D6 polymorphism on plasma level of risperidone and its metabolite in North Indian patients with schizophrenia. Indian J Psychol Med 40(4):335–342PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cherra SJ, Steer E, Gusdon AM, Kiselyov K, Chu CT (2013) Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol 182(2):474–484PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cognata V, D’Agata V, Cavalcanti F, Cavallaro S (2015) Splicing: is there an alternative contribution to Parkinson’s disease? Neurogenetics 16:245–263PubMedPubMedCentralCrossRefGoogle Scholar
  20. Comabella M, Fernandez M, Martin R, Rivera-Vallve S, Borrás E, Chiva C, Julia E, Rovira A, Cantó E, Alvarez-Cermeño JC, Villar LM, Tintoré M, Montalban X (2010) Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133(Pt 4):1082–1093PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefGoogle Scholar
  22. Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK et al (2016) GAD2 alternative transcripts in the human prefrontal cortex, and in schizophrenia and affective disorders. PLoS One 11(2):1–15Google Scholar
  23. Del Re M, Rofi E, Citi V, Fidilio L, Danesi R (2016) Should CYP2D6 be genotyped when treating with tamoxifen? Pharmacogenomics 17(18):1967–1969PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221PubMedCrossRefPubMedCentralGoogle Scholar
  25. Elliott DA, Kim WS, Gorissen S, Halliday GM, Kwok JBJ (2012) Leucine-rich repeat kinase 2 and alternative splicing in Parkinson’s disease. Mov Disord 27(8):1004–1011PubMedCrossRefPubMedCentralGoogle Scholar
  26. English JA, Pennington K, Dunn MJ, Cotter DR (2011) The neuroproteomics of schizophrenia. Biol Psychiatry 69:163–172PubMedCrossRefPubMedCentralGoogle Scholar
  27. Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4):a033118Google Scholar
  28. Fagnani M, Barash Y, Ip JY, Misquitta C, Pan Q, Saltzman AL, Shai O, Lee L, Rozenhek A, Mohammad N, Willaime-Morawek S, Babak T, Zhang W, Hughes TR, van der Kooy D, Frey BJ, Blencowe BJ (2007) Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol 8:R108PubMedPubMedCentralCrossRefGoogle Scholar
  29. Falkai P, Steiner J, Malchow B, Shariati J, Knaus A, Bernstein H-G et al (2016) Oligodendrocyte and interneuron density in hippocampal subfields in schizophrenia and association of oligodendrocyte number with cognitive deficits. Front Cell Neurosci 10:78PubMedPubMedCentralCrossRefGoogle Scholar
  30. Galasko D, Golde TE (2013) Biomarkers for Alzheimer’s disease in plasma, serum and blood – conceptual and practical problems. Alzheimers Res Ther 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ganfornina MD, Do Carmo S, Martinez E, Tolivia J et al (2010) ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia 58:1320–1334PubMedGoogle Scholar
  32. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10(5):499–502PubMedPubMedCentralCrossRefGoogle Scholar
  33. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890PubMedCrossRefGoogle Scholar
  34. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351PubMedCrossRefGoogle Scholar
  35. Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ (2017) Alzheimer’s disease neuroimaging initiative. In vivo staging of regional amyloid deposition. Neurology 89(20):2031–2038PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guipponi M, Santoni FA, Setola V, Gehrig C, Rotharmel M, Cuenca M, Guillin O, Dikeos D, Georgantopoulos G, Papadimitriou G, Curtis L, Méary A, Schürhoff F, Jamain S, Avramopoulos D, Leboyer M, Rujescu D, Pulver A, Campion D, Siderovski DP, Antonarakis SE (2014) Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS One 9(11):e112745PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–62Google Scholar
  38. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  39. Harper A (2010) Mouse models of neurological disorders—a comparison of heritable and acquired traits. Biochim Biophys Acta 1802(10):785–795PubMedCrossRefGoogle Scholar
  40. Herculano-Houzel S, Watson C, Paxinos G (2013) Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat 7:35PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ho Kim J, Franck J, Kang T, Heinsen H, Ravid R, Ferrer I, Cheon MH, Lee J, Yoo JS, Steinbusch HW, Salzet M, Fournier I, Park YM (2015) Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci Rep 5:11138Google Scholar
  42. Hoya S, Watanabe Y, Hishimoto A, Nunokawa A, Kaneko N, Muratake T, Shinmyo N, Otsuka I, Okuda S, Inoue E, Igeta H, Shibuya M, Egawa J, Orime N, Sora I, Someya T (2017) Rare PDCD11 variations are not associated with risk of schizophrenia in Japan. Psychiatry Clin Neurosci 71(11):780–788PubMedCrossRefGoogle Scholar
  43. Hug N, Longman D, Caceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44(4):1483–1495PubMedPubMedCentralCrossRefGoogle Scholar
  44. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A 101(17):6623–6628PubMedPubMedCentralCrossRefGoogle Scholar
  45. Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C et al (2016) Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol Aging 38:214.e1–214.e5CrossRefGoogle Scholar
  46. Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD (2012) O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 11(1):62–74PubMedCrossRefPubMedCentralGoogle Scholar
  47. Johnson ECB, Dammer EB, Duong DM, YinL TM, Troncoso JC, Lah JJ, Levey AI, Seyfried NT (2018) Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13:52PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, Paul JW, Sun S, Herdy JR, Bieri G, Kramer NJ, Gage FH, Van Den Bosch L, Robberecht W, Gitler AD (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18(9):1226–1229PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kelleher NL (2012) A cell-based approach to the human proteome project. J Am Soc Mass Spectrom 23(10):1617–24Google Scholar
  50. Kempf S, Metaxas A, Vea MI, Finsen B, Darvesh S, Larsen MR (2016) An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer’s mouse model. OncoTarget 16:1–21Google Scholar
  51. Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G (2016) Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS One 11(3):e0150672PubMedPubMedCentralCrossRefGoogle Scholar
  52. Klerk E, Hoen PAC (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 31(3):128–139PubMedCrossRefPubMedCentralGoogle Scholar
  53. Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T (2010) An update on clinical proteomics in Alzheimer’s research. J Neurochem 112(6):1386–1414PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kosik KS (1990) Tau protein and neurodegeneration. Mol Neurobiol 4(3–4):171–179PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kroksveen AC, Guldbrandsen A, Vedeler C, Myhr KM, Opsahl JA, Berven FS (2012) Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol Scand 126(195):90–96CrossRefGoogle Scholar
  56. Kumar R, McLain D, Young R, Carlson GA (2008) Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells. J Gen Virol 89(Pt 6):1525–1532PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI (2016) Protein aggregation and neurodegenerative diseases: from theory to therapy. Eur J Med Chem 124:1105–1120PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lahut S, Gispert S, Ömür Ö, Depboylu C, Seidel K, Domínguez-Bautista JA et al (2017) Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson’s disease. Dis Model Mech 10(5):619–631PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lane CA, Hardy, Schott JM (2017) Alzheimer’s disease. Eur J Neurol 25:59–70PubMedCrossRefPubMedCentralGoogle Scholar
  61. Le K, Prabhakar BS, Hong W, Li L (2015) Alternative splicing as a biomarker and potential target for drug discovery. Acta Pharmacol Sin 36(10):1212–1218PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee J, McKinney KQ, Pavlopoulos AJ, Han MH, Kim S, Kim HJ, Hwang S (2016) Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis. Clin Chim Acta 462:118–126PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, Chen Q, Li C, Jia Y, Ohi K, Maher BJ, Brandon NJ, Cross A, Chenoweth JG, Hoeppner DJ, Wei H, Hyde TM, McKay R, Kleinman JE, Weinberger DR (2016a) A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med 22(6):649–656PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li Y, Wang X, Cho J, Shaw T, Wu Z, Bai B, Wang H, Zhou S, Beach TG, Wu G, Zhang J, Peng J (2016b) JUMPg: an integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J Proteome Res 15(7):2309–2320PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lipscombe D (2005) Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 15(3):358–363PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lisitsa A, Moshkovskii S, Chernobrovkin A, Ponomarenko E, Archakov A (2014) Profiling proteoforms: promising follow-up of proteomics for biomarker discovery. Expert Rev Proteomics 11(1):121–129PubMedCrossRefPubMedCentralGoogle Scholar
  68. Liu F, Gong C (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3(8):1–10Google Scholar
  69. Liu C, Kanekiyo T, XuH BG (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol 9(2):106–118PubMedPubMedCentralCrossRefGoogle Scholar
  70. Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15(5):7865–7882PubMedPubMedCentralCrossRefGoogle Scholar
  71. Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R (1991) Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sci 88(9):3932–3936PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mahurkar S, Moldovan M, Suppiah V, Sorosina M, Clarelli F, Liberatore G, Malhotra S, Montalban X, Antigüedad A, Krupa M, Jokubaitis VG, McKay FC, Gatt PN, Fabis-Pedrini MJ, Martinelli V, Comi G, Lechner-Scott J, Kermode AG, Slee M, Taylor BV, Vandenbroeck K, Comabella M, Boneschi FM (2017) Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics J 17(4):312–318Google Scholar
  73. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448PubMedPubMedCentralCrossRefGoogle Scholar
  74. Marton RM, Paşca SP (2016) Neural differentiation in the third dimension: generating a human midbrain. Cell Stem Cell 19(2):145–146PubMedCrossRefPubMedCentralGoogle Scholar
  75. May P, Pichler S, Hartl D, Bobbili DR, Mayhaus M, Spaniol C, Kurz A, Balling R, Schneider JG, Riemenschneider M (2018) Rare ABCA7 variants in 2 German families with Alzheimer disease. Neurol Genet 4(2):e224PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mehrabian M, Brethour D, Williams D, Wang H, Xi Z, Rogaeva E, Schmitt-Ulms G (2016) The prion protein controls polysialylation of neural cell adhesion molecule 1 during cellular morphogenesis. PLoS One 10(8):e0133741Google Scholar
  77. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mills JD, Nalpathamkalam T, Jacobs HIL, Janitz C, Merico D, Hu P et al (2013) RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett 536:90–95PubMedCrossRefPubMedCentralGoogle Scholar
  79. Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun 13(4–5):518–524CrossRefGoogle Scholar
  80. Minjarez B, Calderón-González KG, Rustarazo MLV, Herrera-Aguirre ME, Labra-Barrios ML, Rincon-Limas DE, Pino MMS, Mena R, Luna-Arias JP (2016) Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer’s disease. Data Brief 7:1707–1719PubMedPubMedCentralCrossRefGoogle Scholar
  81. Morgan C, Inestrosa NC (2001) Interactions of laminin with the amyloid ß peptide. Implications for Alzheimer’s disease. Braz J Med Biol Res 34:597–560PubMedCrossRefPubMedCentralGoogle Scholar
  82. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nascimento J, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophr 4:1–11Google Scholar
  84. Nesvizhskii AI (2014) Proteogenomics: concepts, applications and computational strategies. Nat Methods 11(11):1114–1125PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nesvizhskii J, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440PubMedCrossRefPubMedCentralGoogle Scholar
  86. Neuner SM, Wilmott LA, Hoffmann BR, Mozhui K, Kaczorowski CC (2017) Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer’s disease mouse models. Behav Brain Res 322:288–298PubMedCrossRefPubMedCentralGoogle Scholar
  87. Nho K, Horgusluoglu E, Kim S, Risacher SL, Kim D, Foroud T, Aisen PS, Petersen RC, Jack CR, Shaw LM, Trojanowski JQ, Weiner MW, Green RC, Toga AW, Saykin AJ (2016) Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer’s disease. BMC Med Genet 12:9Google Scholar
  88. Nichols WC, Pankratz N, Marek DK, Pauciulo MW, Elsaesser VE, Halter CA, Rudolph A, Wojcieszek J, Pfeiffer RF, Foroud T (2009) Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72(4):310–316PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nilsson P, Loganathan K, Sekiguchi M, Winblad B, Iwata N, Saido TC et al (2015) Loss of neprilysin alters protein expression in the brain of Alzheimer’s disease model mice. Proteom 15(19):3349–3355CrossRefGoogle Scholar
  90. Nussbaum (1998) Putting the parkin into Parkinson’s. Nature 392(6676):544–545PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6(10):1687–1691PubMedCrossRefPubMedCentralGoogle Scholar
  92. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ojopi EPB, Bertoncini AB, Neto ED (2004) Apolipoproteína E e a doença de Alzheimer. Rev Psiquiatr Clín 31(1):26–33CrossRefGoogle Scholar
  94. Pagliarini V, La Rosa P, Sette C (2017) Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Hum Genet 136:1215–1235PubMedCrossRefPubMedCentralGoogle Scholar
  95. Palomino-Alonso M, Lachén-Montes M, González-Morales A, Ausín K, Pérez-Mediavilla A, Fernández-Irigoyen J, Santamaría E (2017) Network-driven proteogenomics unveils an aging-related imbalance in the olfactory IκBα-NFκB p65 complex functionality in Tg2576 Alzheimer’s disease mouse model. Int J Mol Sci 18(11):2260PubMedCentralCrossRefGoogle Scholar
  96. Pan C, Zhou Y, Dator R, Ginghina C, Zhao Y, Movius J, Peskind E, Zabetian CP, Quinn J, Galasko D, Stewart T, Shi M, Zhang J (2014) Targeted discovery and validation of plasma biomarkers of Parkinson’s disease. J Proteome Res 13(11):4535–4545PubMedPubMedCentralCrossRefGoogle Scholar
  97. Panwar B, Menon R, Eksi R, Li H, OmennGS GY (2016) Genome-wide functional annotation of human protein-coding splice variants using multiple instance learning. J Proteome Res 15(6):1747–1753PubMedCrossRefPubMedCentralGoogle Scholar
  98. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12(7):671–678PubMedPubMedCentralCrossRefGoogle Scholar
  99. Passetti F, Ferreira CG, Costa FF (2009) The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 9(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  100. Petzold A (2013) Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol 262(1–2):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  101. Prusiner SB, McKinley MP, Groth DF, Bowman KA, Mock NI, Cochran SP, Masiarz FR (1981) Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci U S A 78(11):6675–6679PubMedPubMedCentralCrossRefGoogle Scholar
  102. Reindl M, Knipping G, Wicher I, Dilitz E, Egg R, Deisenhammer F, Berger T (2001) Increased intrathecal production of apolipoprotein D in multiple sclerosis. J Neuroimmunol 199(2):327–332CrossRefGoogle Scholar
  103. Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9(9):993–999PubMedCrossRefPubMedCentralGoogle Scholar
  104. Rosenthal SL, Kamboh MI (2014) Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr Genet Med Rep 2:85–101PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rossi P, Buggia-Prévot V, Clayton BLL, Vasquez JB, van Sanford C, Andrew RJ et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11(1):59PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ruiz-Martínez J, Azcona LJ, Bergareche A, Martí-Massó JF, Paisán-Ruiz C (2017) Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol Genet 3(5):e177PubMedPubMedCentralCrossRefGoogle Scholar
  108. Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D (2015) Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 265:601–612PubMedCrossRefPubMedCentralGoogle Scholar
  109. Saini SM, Mancuso SG, Mostaid MS et al (2017) Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk. Transl Psychiatry 7(8):e1196PubMedPubMedCentralCrossRefGoogle Scholar
  110. Scholz SW, Mhyre T, Ressom H, Shah S, Federoff HJ (2012) Genomics and bioinformatics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009449PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, Sardi BP, Valsecchi M, Hoffmann S, Schwarz LK, Hedrich U, Berg D, Shihabuddin LS, Hu J, Pruszak J, Gygi SP, Sonnino S, Gasser T, Deleidi M (2014) iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028PubMedCrossRefPubMedCentralGoogle Scholar
  112. Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 167:64–72PubMedCrossRefPubMedCentralGoogle Scholar
  113. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2:1–16CrossRefGoogle Scholar
  114. Shen L, Liao L, Chen C, Guo Y, Song D, Wang Y, Chen Y, Zhang K, Ying M, Li S, Liu Q, Ni J (2017) Proteomics analysis of blood serums from Alzheimer’s disease patients using iTRAQ labeling technology. J Alzheimers Dis 56(1):361–378PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM (2016) Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem 9:521–545CrossRefGoogle Scholar
  116. Shi Q, Chen L, Zhang B, Xiao K, Zhou W, Chen C, Zhang X, Tian C, Gao C, Wang J, Han J, Dong X (2015) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 14(4):854–869PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sinclair D, Webster MJ, Fullerton JM, Weickert CS (2012) Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry 12:84PubMedPubMedCentralCrossRefGoogle Scholar
  118. Smith DJ (2009) Mitochondrial dysfunction in mouse models of Parkinson's disease revealed by transcriptomics and proteomics. J Bioenerg Biomembr 41(6):487–491PubMedPubMedCentralCrossRefGoogle Scholar
  119. Smith LM, Kelleher NL, The Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187PubMedPubMedCentralCrossRefGoogle Scholar
  120. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H et al (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10(3):e1003517PubMedPubMedCentralCrossRefGoogle Scholar
  121. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MAS, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5:e12813PubMedPubMedCentralCrossRefGoogle Scholar
  122. Stępnicki P, Kondej M, Kaczor AA (2018) Current concepts and treatments of schizophrenia. Molecules 23(8):E2087Google Scholar
  123. Stocker H, Möllers T, Perna L, Brenner H (2018) The genetic risk of Alzheimer’s disease beyond APOE ε4: systematic review of Alzheimer’s genetic risk scores. Transl Psychiatry 8:166PubMedPubMedCentralCrossRefGoogle Scholar
  124. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tagawa K, Homma H, Saito A, Fujita K, Chen X, Imoto S, Oka T, Ito H, Motoki K, Yoshida C, Hatsuta H, Murayama S, Iwatsubo T, Miyano S, Okazawa H (2015) Comprehensive phosphoproteome analysis unravels the core signaling network that initiates the earliest synapse pathology in preclinical Alzheimer’s disease brain. Hum Mol Genet 24(2):540–558PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tao X, Tong L (2003) Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease. J Biol Chem 278(33):31372–31379PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tavares R, Scherer NM, Ferreira CG, Costa FF, Passetti F (2015) Splice variants in the proteome: a promising and challenging field to targeted drug discovery. Drug Discov Today 20(3):353–360PubMedCrossRefPubMedCentralGoogle Scholar
  128. Tavares R, Wajnberg G, Scherer NDM, Pauletti BA, Cassoli JS, Ferreira CG et al (2017) Unveiling alterative splice diversity from human oligodendrocyte proteome data. J Proteome 151:293–301CrossRefGoogle Scholar
  129. Tokay T, Hachem R, Masmoudi-Kouki O, Gandolfo P, Desrues L, Leprince J et al (2008) Beta-amyloid peptide stimulates endozepine release in cultured rat astrocytes through activation of N-formyl peptide receptors. Glia 56(13):1380–1389PubMedCrossRefPubMedCentralGoogle Scholar
  130. Torres M, Cartier L, Matamala JM, Hernández N, Woehlbier U, Hetz C (2012) Altered Prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease. PLoS One 7(4):e36159PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905PubMedCrossRefPubMedCentralGoogle Scholar
  132. Vagnoni A, Perkinton MS, Gray EH, Francis PT, Noble W, Miller CCJ (2012) Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Ab production. Hum Mol Genet 21(13):2845–2854PubMedPubMedCentralCrossRefGoogle Scholar
  133. Verheijen J, Sleegers K (2018) Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet 34(6):434–447PubMedCrossRefPubMedCentralGoogle Scholar
  134. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang J, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wang ES, Yao HB, Chen YH, Wang G, Gao WW, Sun YR, Guo JG, Hu JW, Jiang CC, Hu J (2013) Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem 31:625–637PubMedCrossRefPubMedCentralGoogle Scholar
  137. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Green RC, Harvey D, Jack CR, Jagust W, Luthman J, Morris JC, Petersen RC, Saykin AJ, Shaw L, Shen L, Schwarz A, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2015) 2014 update of the Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 11(6):e1–e120PubMedPubMedCentralCrossRefGoogle Scholar
  138. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment.  https://doi.org/10.12688/f1000research.14506.1
  139. Wijte D, McDonnell LA, Balog CIA, Bossers K, Deelder AM, Swaab DF, Verhaagen J, Mayboroda OA (2012) A novel peptidomics approach to detect markers in cerebrospinal fluid of Alzheimer’s disease samples. Methods 56:500–507PubMedCrossRefPubMedCentralGoogle Scholar
  140. Xie J, Black DL (2001) A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410(6831):936–939Google Scholar
  141. Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhan YY, Liang BQ, Wang H, Wang ZH, Weng QH, Dai DP, Cai JP, Hu GX (2016) Effect of CYP2D6 variants on venlafaxine metabolism in vitro. Xenobiotica 46(5):424–429PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zhao J, O’Connor T, Vassar R (2011) The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8:150Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Functional Genomics and BioinformaticsOswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz)Rio de JaneiroBrazil
  2. 2.Laboratory of Gene Expression RegulationCarlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz)CuritibaBrazil
  3. 3.Departamento de Bioquímica e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations