Advertisement

Journal of Molecular Neuroscience

, Volume 67, Issue 1, pp 111–124 | Cite as

Mesenchymal Stem Cells from Nucleus Pulposus and Neural Differentiation Potential: a Continuous Challenge

  • Raffaella Lazzarini
  • Simone Guarnieri
  • Gianluca Fulgenzi
  • Maria Addolorata Mariggiò
  • Laura Graciotti
  • Monia Martiniani
  • Monia OrcianiEmail author
  • Nicola Specchia
  • Roberto Di Primio
Article
  • 61 Downloads

Abstract

Mesenchymal stem cells (MSCs) are well-characterized adult stem cells, recently isolated from human nucleus pulposus of degenerate and non-degenerate intervertebral disc. The attention to this source is linked to its embryologic history and cells may conserve a stronger aptitude to neuronal differentiation than other MSCs. Here, MSCs from nucleus pulposus (NP-MSCs) were successfully isolated and characterized for morphology, proliferation, and expression of selected genes. Subsequently, the neuronal differentiation was induced by 10 days of culture with a neuronal medium. NP-MSCs subjected to neural differentiation media (NP-MSCs-N) showed a morphological and biochemical modifications. NP-MSCs-N displayed elongated shape with protrusion, intermediate filaments, microtubules, and electron dense granules and the ability to form neurospheres. Even if they expressed neural markers such as NESTIN, β-TUBULIN III, MAP-2, GAP-43, and ENOLASE-2, the neural differentiated cells did not show neither spontaneous nor evoked intracellular calcium variations compared to the undifferentiated cells, suggesting that cells do not have electric functional properties. Further studies are required in order to get a better understanding and characterization of NP-MSCs and analyzed the molecular mechanisms that regulate their neural differentiation potential.

Keywords

Nucleus pulposus mesenchymal stem cells Neural differentiation Regenerative medicine 

Notes

Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

References

  1. Alexanian AR, Maiman DJ, Kurpad SN, Gennarelli TA (2008). In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem Cells Dev 17:1123–1130.  https://doi.org/10.1089/scd.2007.0212.
  2. Avwenagha O, Campbell G, Bird MM (2003) Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment. J Neurocytol 32:1077–1089. https://doi.org/10.1023/B:NEUR.0000 021903.24849.6cCrossRefPubMedGoogle Scholar
  3. Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32:1713–1723.  https://doi.org/10.1002/stem.1649 CrossRefPubMedGoogle Scholar
  4. Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA (2003) Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res 993:18–29CrossRefGoogle Scholar
  5. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319.  https://doi.org/10.1016/j.stem.2008.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntión S, Hernandez-Campo P, Santamaria C, Carrancio S, Barbado MV, Cruz G, Gutierrez-Cosío S, Herrero C, San Miguel JF, Briñon JG, del Cañizo MC (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 35:2259–2265.  https://doi.org/10.1097/BRS.0b013e3181cb8828 CrossRefGoogle Scholar
  7. Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6:1162–1168.  https://doi.org/10.1038/nn1131 CrossRefPubMedGoogle Scholar
  8. Caprara GA, Morabito C, Perni S, Navarra R, Guarnieri S, Mariggiò MA (2016) Evidence for altered Ca2+ handling in growth associated protein 43-knockout skeletal muscle. Front Physiol 7:493.  https://doi.org/10.3389/fphys.2016.00493 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casarosa S, Bozzi Y, Conti L (2014) Neural stem cells: ready for therapeutic applications? Mol Cell Ther 2:31.  https://doi.org/10.1186/2052-8426-2-31 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317.  https://doi.org/10.1080/14653240600855905 CrossRefPubMedGoogle Scholar
  11. Foudah D, Monfrini M, Donzelli E, Niada S, Brini AT, Orciani M, Tredici G, Miloso M (2014, 2014) Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res:987678.  https://doi.org/10.1155/2014/987678
  12. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247CrossRefGoogle Scholar
  13. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765CrossRefGoogle Scholar
  14. Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549.  https://doi.org/10.1083/jcb.200110134 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hepp R, Langley K (2001) SNAREs during development. Tissue Res 305:247–253CrossRefGoogle Scholar
  16. Ikebe C, Suzuki K (2014) Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014:951512.  https://doi.org/10.1155/2014/951512 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lazzarini R, Olivieri F, Ferretti C, Mattioli-Belmonte M, Di Primio R, Orciani M (2014) mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell Tissue Res 355:121–130.  https://doi.org/10.1007/s00441-013-1725-4 CrossRefPubMedGoogle Scholar
  18. Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260.  https://doi.org/10.1186/s12967-014-0260-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mariotti C, Lazzarini R, Nicolai M, Saitta A, Orsini E, Orciani M, Di Primio R (2015). Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell Tissue Res 362:21–31.  https://doi.org/10.1007/s00441-015-2185-9.
  20. Morabito C, Guarnieri S, Fanò G, Mariggiò MA (2010) Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem 26:947–958.  https://doi.org/10.1159/000324003 CrossRefPubMedGoogle Scholar
  21. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391CrossRefGoogle Scholar
  22. Ojovan SM, McDonald M, Rabieh N, Shmuel N, Erez H, Nesladek M, Spira ME (2014) Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation. Front Neuroeng 7:17.  https://doi.org/10.3389/fneng.2014.00017 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Orciani M, Davis S, Appolloni G, Lazzarini R, Mattioli-Belmonte M, Ricciuti RA, Boscaro M, Di Primio R, Arnaldi G (2015) Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 222:9–16.  https://doi.org/10.1038/cgt.2014.63. CrossRefGoogle Scholar
  24. Orciani M, Mariggiò MA, Morabito C, Di Benedetto G, Di Primio R (2010) Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin Pharmacol Physiol 23:124–132.  https://doi.org/10.1159/000270383 CrossRefPubMedGoogle Scholar
  25. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  26. Renard E, Porée B, Chadjichristos C, Kypriotou M, Maneix L, Bigot N, Legendre F, Ollitrault D, De Crombrugghe B, Malléin-Gérin F, Moslemi S, Demoor M, Boumediene K, Galéra P (2012) Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 90:649–666.  https://doi.org/10.1007/s00109-011-0842-3 CrossRefGoogle Scholar
  27. Rosskothen-Kuhl N, Illing RB (2014) Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PLoS One 9:e92624.  https://doi.org/10.1371/journal.pone.0092624 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sagar R, Walther-Jallow L, David AL, Götherström C, Westgren M (2018) Fetal mesenchymal stromal cells: an opportunity for prenatal cellular therapy. Curr Stem Cell Rep 4:61–68.  https://doi.org/10.1007/s40778-018-0118-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sana J, Zambo I, Skoda J, Neradil J, Chlapek P, Hermanova M, Mudry P, Vasikova A, Zitterbart K, Hampl A, Sterba J, Veselska R (2011) CD133 expression and identification of CD133/nestin positive cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. Anal Cell Pathol (Amst) 34:303–318.  https://doi.org/10.3233/ACP-2011-0018. CrossRefGoogle Scholar
  30. Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, Okamoto OK, Verjovski-Almeida S, Zatz M (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5:387–401.  https://doi.org/10.1007/s12015-009-9098-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shen Q, Zhang L, Chai B, Ma X (2015) Isolation and characterization of mesenchymal stem-like cells from human nucleus pulposus tissue. Sci China Life Sci 58:509–511.  https://doi.org/10.1007/s11427-015-4839-y CrossRefPubMedGoogle Scholar
  32. Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H (2007) Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke 38:367–374.  https://doi.org/10.1161/01.STR.0000254463.24655.14 CrossRefPubMedGoogle Scholar
  33. Stoltz JF, de Isla N, Li YP, Bensoussan D, Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N, Reppel L, He Y (2015) Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int 2015:734731:1–19.  https://doi.org/10.1155/2015/734731 CrossRefGoogle Scholar
  34. Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB (2013) Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci 15:357–398.  https://doi.org/10.1007/7854_2012_223 CrossRefPubMedGoogle Scholar
  35. Uccelli A, Morando S, Bonanno S, Bonanni I, Leonardi A, Mancardi G (2011) Mesenchymal stem cells for multiple sclerosis: does neural differentiation really matter? Curr Stem Cell Res Ther 6:69–72CrossRefGoogle Scholar
  36. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736.  https://doi.org/10.1038/nri2395 CrossRefGoogle Scholar
  37. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35 e00191:1–18.  https://doi.org/10.1042/BSR20150025 CrossRefGoogle Scholar
  38. Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421.  https://doi.org/10.1002/jcp.21210 CrossRefPubMedGoogle Scholar
  39. Zhao C, Deng W, Gage FH (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660.  https://doi.org/10.1016/j.cell.2008.01.033, Mechanisms and Functional Implications of Adult Neurogenesis.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raffaella Lazzarini
    • 1
  • Simone Guarnieri
    • 2
  • Gianluca Fulgenzi
    • 3
  • Maria Addolorata Mariggiò
    • 2
  • Laura Graciotti
    • 3
  • Monia Martiniani
    • 4
  • Monia Orciani
    • 1
    Email author
  • Nicola Specchia
    • 4
  • Roberto Di Primio
    • 1
  1. 1.Department of Clinical and Molecular Sciences - HistologyUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Department of Neuroscience, Imaging and Clinical Sciences and Centro Scienze dell’ Invecchiamento e Medicina Traslazionale (CeSI-MeT)“G. d’Annunzio” University of Chieti-PescaraChietiItaly
  3. 3.Department of Clinical and Molecular Sciences – PathologyUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Department of Clinical and Molecular Sciences – Clinic of OrthopaedicsUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations