Journal of Molecular Neuroscience

, Volume 67, Issue 1, pp 16–27 | Cite as

Mitochondrial Electron Transport Chain Complex Dysfunction in MeCP2 Knock-Down Astrocytes: Protective Effects of Quercetin Hydrate

  • Arpita Dave
  • Foram Shukla
  • Hemendra Wala
  • Prakash PillaiEmail author


Astrocytes play the central role in CNS metabolism to support neuronal functions. Mehyl-CpG-binding protein 2 (MeCP2) is the global transcription factor with differential expression in neuronal and non-neuronal cells. MeCP2 mutation and downstream detrimental effects have been reported in astrocytes also in MeCP2-associated neurodevelopmental disorder-Rett syndrome. Several studies have shown mitochondrial impairment linked to ROS production and reduced ATP synthesis in Rett patients and models, but consequences of MeCP2 deficiency on mitochondrial electron transport chain complexes in astrocytes and effect of known antioxidant quercetin aglycone has not yet been reported. The present study aimed to investigate effect of quercetin on mitochondrial functioning in MeCP2-deficient astrocytes. Our data show onefold upregulated Uqcrc1 and Ndufv2 gene expression, subtle change in protein expression, and significantly reduced mitochondrial respiratory chain complex-II and complex-III enzyme activities in MeCP2 knock-down astrocytes. Intracellular calcium robustly increased and mitochondrial membrane potential decreased, while no change in ROS was observed in MeCP2 knock-down astrocytes. Quercetin increased MeCP2 and normalized Uqcrc1 and Ndufv2 gene expression but did not modulate MeCP2 and Ndufv2 proteins expression. Interestingly, quercetin upregulated significantly the mitochondrial respiratory complex-II, complex-III, and complex-IV activities in dose-dependent manner. It also restored intracellular calcium level and mitochondrial membrane potential. In vitro observations suggest the beneficial effect of quercetin in mitochondrial functioning in MeCP2-deficient condition. There are no reports focusing on role of quercetin in mitochondrial function in MeCP2-deficient astrocytes, and these observations serve as preliminary data to evaluate quercetin’s effects in vivo.


MeCP2 Electron transport chain Mitochondria Astrocytes Quercetin aglycone 



Methyl-CpG-binding protein 2


Rett syndrome


Negative control


MeCP2 siRNA-treated


Ubiquinol cytochrome c reductase core protein


NADH dehydrogenase (ubiquinone) flavoprotein 2


Central nervous system


Mitochondrial membrane potential


Mitochondrial respiratory chain


Quercetin hydrate



We acknowledge the animal house facility, Biochemistry department, Faculty of Science, The Maharaja Sayajirao University of Baroda and Sun Pharma, Baroda for the animals. We are also thankful to DBT-ILSPARE program for the confocal microscope and real-time PCR facility in the Dr. Vikram Sarabhai block. We would also like to thank Dr. R.V. Devkar for technical support.

Funding Information

We thank Gujarat State Biotechnology Mission (GSBTM), Gandhinagar, India, for funding this research and providing JRF-SRF during May 2013–2016. (Sanction order No. GSBTM/MD/PROJECTS/SSA/3379/12-13dated 4th March 2013).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Animal Ethical Statement

All the mentioned studies were approved by institutional animal ethics committee (IAEC), Department of Zoology & Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda.


  1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188PubMedCrossRefGoogle Scholar
  2. Ballas N, Lioy DT, Grunseich C, Mandel G (2009) Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12(3):311–317PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta (BBA)-Bioenerget 1606(1–3):137–146CrossRefGoogle Scholar
  4. Bowler MW, Montgomery MG, Leslie AGW, Walker JE (2006) How azide inhibits ATP hydrolysis by the F-ATPases. Proc Natl Acad Sci 103(23):8646–8649PubMedCrossRefGoogle Scholar
  5. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S-S (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol-Cell Physiol 287(4):C817–C833PubMedCrossRefGoogle Scholar
  6. Buch L, Langhnoja J, Pillai PP (2018) Role of astrocytic MeCP2 in regulation of CNS myelination by affecting oligodendrocyte and neuronal physiology and axo–glial interactions. Exp Brain Res 236(11):3015–3027Google Scholar
  7. Cacabelos R, Torrellas C (2015) Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci 16(12):30483–30543PubMedPubMedCentralCrossRefGoogle Scholar
  8. Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M (2012) Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact 195(3):199–205PubMedCrossRefGoogle Scholar
  9. Cervellati C, Sticozzi C, Romani A, Belmonte G, De Rasmo D, Signorile A, Cervellati F, Milanese C, Mastroberardino PG, Pecorelli A (2015) Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852(10):2066–2074CrossRefGoogle Scholar
  10. Chakraborty S, Stalin S, Das N, Choudhury ST, Ghosh S, Swarnakar S (2012) The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 33(10):2991–3001PubMedCrossRefGoogle Scholar
  11. Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40(6):976–982PubMedCrossRefGoogle Scholar
  12. Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Q Richard L (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2(5):1044–1051PubMedCrossRefGoogle Scholar
  13. Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Valacchi G, Rossi M, Hayek J (2012) Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim Biophys Acta (BBA)-Gen Subj 1820(4):511–520CrossRefGoogle Scholar
  14. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058CrossRefGoogle Scholar
  15. Costa LG, Garrick JM, Roquè PJ, Pellacani C (2016) Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev 2016:2986796PubMedPubMedCentralGoogle Scholar
  16. De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, Guazzi G, Latini G, Comporti M, Valacchi G (2009) Systemic oxidative stress in classic Rett syndrome. Free Radical Biology and Medicine no. 47(4):440–448CrossRefGoogle Scholar
  17. De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D’Esposito M, Filosa S, Oger C, Guy A, Bultel-Poncé V (2012) Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr 7(3):447–458PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Felice C, Ragione FD, Signorini C, Leoncini S, Pecorelli A, Ciccoli L, Scalabrì F, Marracino F, Madonna M, Belmonte G (2014) Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. Neurobiol Dis 68:66–77PubMedPubMedCentralCrossRefGoogle Scholar
  19. De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA (2015) Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 83:167–177PubMedCrossRefGoogle Scholar
  20. Derecki NC, Cronk JC, Zhenjie L, Eric X, Abbott SBG, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484(7392):105–109PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188PubMedPubMedCentralCrossRefGoogle Scholar
  22. Formichi P, Battisti C, Dotti MT, Hayek G, Zappella M, Federico A (1998) Vitamin E serum levels in Rett syndrome. J Neurol Sci 156(2):227–230PubMedCrossRefGoogle Scholar
  23. Galluzzo P, Martini C, Bulzomi P, Leone S, Bolli A, Pallottini V, Marino M (2009) Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol Nutr Food Res 53(6):699–708PubMedCrossRefGoogle Scholar
  24. Gibson JH, Slobedman B, Harikrishnan KN, Williamson SL, Minchenko D, El-Osta A, Stern JL, Christodoulou J (2010) Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 11(1):53PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gold WA, Williamson SL, Kaur S, Hargreaves IP, Land JM, Pelka GJ, Tam PPL, Christodoulou J (2014) Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): implications for the disease phenotype. Mitochondrion 15:10–17PubMedCrossRefGoogle Scholar
  26. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2012) Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem Biol Interact 195(2):154–164PubMedCrossRefGoogle Scholar
  27. Griffiths EJ, Rutter GA (2009) Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta (BBA)-Bioenerget 1787(11):1324–1333CrossRefGoogle Scholar
  28. Großer E, Hirt U, Janc OA, Menzfeld C, Fischer M, Kempkes B, Vogelgesang S, Manzke TU, Opitz L, Salinas-Riester G (2012) Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiol Dis 48(1):102–114PubMedCrossRefGoogle Scholar
  29. Hou Y, Aboukhatwa MA, Lei D-L, Manaye K, Khan I, Luo Y (2010) Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58(6):911–920PubMedCrossRefGoogle Scholar
  30. Janc OA, Müller M (2014) The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Front Cell Neurosci 8:56PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jin L-W, Horiuchi M, Wulff H, Liu X-B, Cortopassi GA, Erickson JD, Maezawa I (2015) Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J Neurosci 35(6):2516–2529PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kriaucionis S, Paterson A, Curtis J, Guy J, MacLeod N, Bird A (2006) Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol Cell Biol 26(13):5033–5042PubMedPubMedCentralCrossRefGoogle Scholar
  33. Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J (2011) Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep 16(4):145–153PubMedCrossRefGoogle Scholar
  34. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914PubMedCrossRefGoogle Scholar
  35. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok S-m, Feldman DA, Bateup HS, Gao Q (2013) Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13(4):446–458PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, Hirrlinger PG, Kirchhoff F, Bissonnette JM, Ballas N (2011) A role for glia in the progression of Rett’s syndrome. Nature 475(7357):497–500Google Scholar
  37. Liu P, Zou D, Yi L, Chen M, Gao Y, Zhou R, Zhang Q, Zhou Y, Zhu J, Chen K (2015) Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway. Restor Neurol Neurosci 33(2):143–157PubMedGoogle Scholar
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408Google Scholar
  39. Maezawa I, Jin L-W (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 30(15):5346–5356PubMedPubMedCentralCrossRefGoogle Scholar
  40. Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin L-W (2009) Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 29(16):5051–5061PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mironov SL, Skorova E, Hartelt N, Mironova LA, Hasan MT, Kügler S (2009) Remodelling of the respiratory network in a mouse model of Rett syndrome depends on brain-derived neurotrophic factor regulated slow calcium buffering. J Physiol 587(11):2473–2485PubMedPubMedCentralCrossRefGoogle Scholar
  42. Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K (2011) Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Invest Ophthalmol Vis Sci 52(2):1055–1063PubMedCrossRefGoogle Scholar
  43. Nguyen MVC, Felice CA, Fang D, Covey MV, Robinson JK, Mandel G, Ballas N (2013) Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci 33(48):18764–18774PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3–4):311–317CrossRefGoogle Scholar
  45. Nicholls DG (2006) Simultaneous monitoring of ionophore-and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 281(21):14864–14874PubMedCrossRefGoogle Scholar
  46. Parikh ZS, Tripathi A, Pillai PP (2017) Differential regulation of MeCP2 phosphorylation by laminin in oligodendrocytes. J Mol Neurosci 62(3–4):309–317PubMedCrossRefGoogle Scholar
  47. Pecorelli A, Leoni G, Cervellati F, Canali R, Signorini C, Leoncini S, Cortelazzo A, De Felice C, Ciccoli L, Hayek J, Valacchi G (2013) Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of Rett syndrome patients. Mediators Inflamm 2013:137629PubMedPubMedCentralCrossRefGoogle Scholar
  48. Pecorelli A, Cervellati C, Cortelazzo A, Cervellati F, Sticozzi C, Mirasole C, Guerranti R, Trentini A, Zolla L, Savelli V (2016) Proteomic analysis of 4-hydroxynonenal and nitrotyrosine modified proteins in RTT fibroblasts. Int J Biochem Cell Biol 81:236–245PubMedCrossRefGoogle Scholar
  49. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115PubMedPubMedCentralCrossRefGoogle Scholar
  50. Qiu L, Luo Y, Chen X (2018) Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed Pharmacother 103:1585–1591PubMedCrossRefGoogle Scholar
  51. Sandhir R, Mehrotra A (2013) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta (BBA)-Mol Basis Dis 1832(3):421–430CrossRefGoogle Scholar
  52. Saywell V, Viola A, Confort-Gouny S, Le Fur Y, Villard L, Cozzone PJ (2006) Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochem Biophys Res Commun 340(3):776–783PubMedCrossRefGoogle Scholar
  53. Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97(4):673–683PubMedCrossRefGoogle Scholar
  54. Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147(1):321–334PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sharma K, Singh J, Pillai PP, Frost EE (2015) Involvement of MeCP2 in regulation of myelin-related gene expression in cultured rat oligodendrocytes. J Mol Neurosci 57(2):176–184PubMedCrossRefGoogle Scholar
  56. Shulyakova NO (2016) Studies of mitochondrial dysfunction in models of Rett syndrome. In: University of Toronto (Canada)Google Scholar
  57. Shulyakova N, Andreazza AC, Mills LR, Eubanks JH (2017) Mitochondrial dysfunction in the pathogenesis of Rett syndrome: implications for mitochondria-targeted therapies. Front Cell Neurosci 11:58PubMedPubMedCentralCrossRefGoogle Scholar
  58. Sierra C, Vilaseca Marı́a A, Brandi N, Artuch R, Mira A, Nieto M, Pineda M (2001) Oxidative stress in Rett syndrome. Brain Dev 23:S236–S239PubMedCrossRefGoogle Scholar
  59. Signorini C, Leoncini S, De Felice C, Pecorelli A, Meloni I, Ariani F, Mari F, Amabile S, Paccagnini E, Gentile M, Belmonte G (2014) Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome. Oxid Med Cell Longev 2014:195935PubMedPubMedCentralCrossRefGoogle Scholar
  60. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7(6):1235–1246PubMedCrossRefGoogle Scholar
  61. Valenti D, de Bari L, Vigli D, Lacivita E, Leopoldo M, Laviola G, Vacca RA, De Filippis B (2017) Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology 121:79–88PubMedCrossRefGoogle Scholar
  62. Verkhratsky A, Rodríguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353(1–2):45–56PubMedCrossRefGoogle Scholar
  63. Vora P, Mina R, Namaka M, Frost EE (2010) A novel transcriptional regulator of myelin gene expression: implications for neurodevelopmental disorders. Neuroreport no 21(14):917–921CrossRefGoogle Scholar
  64. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader1. Free Radic Biol Med 27(5–6):612–616PubMedCrossRefGoogle Scholar
  65. Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849PubMedCrossRefGoogle Scholar
  66. Wu S-N, Chiang H-T, Shen A-Y, Lo Y-K (2003) Differential effects of quercetin, a natural polyphenolic flavonoid, on L-Type calcium current in pituitary tumor (GH3) cells and neuronal NG108-15 cells. J Cell Physiol 195(2):298–308PubMedCrossRefGoogle Scholar
  67. Yasui DH, Huichun X, Dunaway KW, LaSalle JM, Jin L-W, Maezawa I (2013) MeCP2 modulates gene expression pathways in astrocytes. Mol Autism 4(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  68. Yeganeh PR, Leahy J, Spahis S, Patey N, Desjardins Y, Roy D, Delvin E, Garofalo C, Leduc-Gaudet J-P, St-Pierre D (2018) Apple peel polyphenols reduce mitochondrial dysfunction in mice with DSS-induced ulcerative colitis. J Nutr Biochem 57:56–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of NeurobiologyThe Maharaja Sayajirao University of BarodaVadodaraIndia
  2. 2.Department of ZoologyThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations