Advertisement

The Expression of Hypoxia-Induced Gene 1 (Higd1a) in the Central Nervous System of Male and Female Rats Differs According to Age

  • Lucía López
  • María José Zuluaga
  • Patricia Lagos
  • Daniella Agrati
  • Gabriela Bedó
Article
  • 16 Downloads

Abstract

HIGD1A (hypoxia-induced gene domain protein-1a), a mitochondrial inner membrane protein present in various cell types, has been mainly associated with anti-apoptotic processes in response to stressors. Our previous findings have shown that Higd1a mRNA is widely expressed across the central nervous system (CNS), exhibiting an increasing expression in the spinal cord from postnatal day 1 (P1) to 15 (P15) and changes in the distribution pattern from P1 to P90. During the first weeks of postnatal life, the great plasticity of the CNS is accompanied by cell death/survival decisions. So we first describe HIGD1A expression throughout the brain during early postnatal life in female and male pups. Secondly, based on the fact that in some areas this process is influenced by the sex of individuals, we explore HIGD1A expression in the sexual dimorphic nucleus (SDN) of the medial preoptic area, a region that is several folds larger in male than in female rats, partly due to sex differences in the process of apoptosis during this period. Immunohistochemical analysis revealed that HIGD1A is widely but unevenly expressed throughout the brain. Quantitative Western blot analysis of the parietal cortex, diencephalon, and spinal cord from both sexes at P1, P5, P8, and P15 showed that the expression of this protein is predominantly high and changes with age but not sex. Similarly, in the sexual dimorphic nucleus, the expression of HIGD1A varied according to age, but we were not able to detect significant differences in its expression according to sex. Altogether, these results suggest that HIGD1A protein is expressed in several areas of the central nervous system following a pattern that quantitatively changes with age but does not seem to change according to sex.

Keywords

HIGD1A Gene expression CNS Postnatal neural maturation Sex differences 

Notes

Acknowledgments

The authors wish to thank Héctor Rodríguez, Joel González and Enzo Cavelli for their excellent animal care, Dr. Inés Pose for assistance in histological analysis, and Dr. Adriana Parodi for her helpful advice.

Funding Information

This work was supported in part by the Agencia Nacional de Investigación e Innovación (ANII) of Uruguay (grant number FCE_2_2011_1_6459) and Comisión Sectorial de Investigación Científica (Universidad de la República, Uruguay).

Compliance with Ethical Standards

Animal care and experimental procedures were performed in accordance with the Uruguayan law (Law No. 18611) on the use and care of laboratory animals, and the Ethical Committee of Facultad de Ciencias approved this study (exp.240011-002308-14).

Supplementary material

12031_2018_1195_Fig6_ESM.png (5.4 mb)
ESM 1

Immunohistochemical distribution of HIGD1A protein in telencephalon regions. (PNG 5482 kb)

12031_2018_1195_MOESM1_ESM.tif (398.3 mb)
High Resolution (TIF 407842 kb)
12031_2018_1195_Fig7_ESM.png (2.8 mb)
ESM 2

Immunohistochemical distribution of HIGD1A protein in diencephalon regions. (PNG 2825 kb)

12031_2018_1195_MOESM2_ESM.tif (100.8 mb)
High Resolution (TIF 103220 kb)

References

  1. Alavi MV, Fuhrmann N (2013) Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol Neurodegener 8:32.  https://doi.org/10.1186/1750-1326-8-32 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254.  https://doi.org/10.1016/j.jneumeth.2008.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almeida A, Bolaños JP, Medina JM (1999) Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Lett 452:290–294.  https://doi.org/10.1016/S0014-5793(99)00628-6 CrossRefPubMedGoogle Scholar
  4. Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E (2015) HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep 10:891–899.  https://doi.org/10.1016/j.celrep.2015.01.020 CrossRefGoogle Scholar
  5. Ameri K, Rajah AM, Nguyen V, Sanders TA, Jahangiri A, DeLay M, Donne M, Choi HJ, Tormos KV, Yeghiazarians Y, Jeffrey SS, Rinaudo PF, Rowitch DH, Aghi M, Maltepe E (2013) Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress. PLoS One 8:e62758.  https://doi.org/10.1371/journal.pone.0062758 CrossRefPubMedPubMedCentralGoogle Scholar
  6. An H-J, Cho G, Lee J-O, Paik SG, Kim YS, Lee H (2013) Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria. Proc Natl Acad Sci U S A 110:13014–13019.  https://doi.org/10.1073/pnas.1307170110 CrossRefPubMedPubMedCentralGoogle Scholar
  7. An HJ, Shin H, Jo SG, Kim YJ, Lee JO, Paik SG, Lee H (2011) The survival effect of mitochondrial Higd-1a is associated with suppression of cytochrome C release and prevention of caspase activation. Biochim Biophys Acta - Mol Cell Res 1813:2088–2098.  https://doi.org/10.1016/j.bbamcr.2011.07.017 CrossRefGoogle Scholar
  8. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18CrossRefPubMedGoogle Scholar
  9. Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD (2017) 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 75:166–182.  https://doi.org/10.1016/j.neubiorev.2017.01.042 CrossRefPubMedGoogle Scholar
  10. Bedó G, Lagos P, Agrati D (2012) Temporal distribution of Hig-1 (hypoxia-induced gene 1) mRNA and protein in rat spinal cord: changes during postnatal life. J Mol Neurosci 47:666–673.  https://doi.org/10.1007/s12031-012-9713-9 CrossRefPubMedGoogle Scholar
  11. Bedó G, Vargas M, Ferreiro M et al (2005) Characterization of hypoxia induced gene 1: expression during rat central nervous system maturation and evidence of antisense RNA expression. Int J Dev Biol 49:431–436.  https://doi.org/10.1387/ijdb.041901gb CrossRefPubMedGoogle Scholar
  12. Bleier R, Byne W, Siggelkow I (1982) Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in guinea pig, rat, hamster, and mouse. J Comp Neurol 212:118–130.  https://doi.org/10.1002/cne.902120203 CrossRefPubMedGoogle Scholar
  13. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder committee revisited. Nat Rev Neurosci 9:110–122.  https://doi.org/10.1038/nrn2252 CrossRefPubMedGoogle Scholar
  14. Chadwick W, Boyle JP, Zhou Y, Wang L, Park SS, Martin B, Wang R, Becker KG, Wood WH, Zhang Y, Peers C, Maudsley S (2011) Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes. PLoS One 6:e21638.  https://doi.org/10.1371/journal.pone.0021638 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chanrion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Grogan GM, Mauriac L, Katsaros D, Molina F, Theillet C, Darbon JM (2008) A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 14:1744–1752.  https://doi.org/10.1158/1078-0432.CCR-07-1833 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen L, Fink T, Zhang X-Y, Ebbesen P, Zachar V (2005) Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis. Differentiation 73:350–363.  https://doi.org/10.1111/j.1432-0436.2005.00038.x CrossRefPubMedGoogle Scholar
  17. Chung WCJ, Swaab DF, De Vries GJ (2000) Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain. J Neurob 43:234–243CrossRefGoogle Scholar
  18. Davis EC, Popper P, Gorski RA (1996) The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 734:10–18CrossRefPubMedGoogle Scholar
  19. Denko N, Schindler C, Koong A, Laderoute C, Green C, Giaccia A (2000) Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin Cancer Res 6:480–487Google Scholar
  20. Forger NG (2009) Control of cell number in the sexually dimorphic brain and spinal cord. J Neuroendocrinol 21:393–399.  https://doi.org/10.1111/j.1365-2826.2009.01825.x.Control CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gavriouchkina D, Fischer S, Ivacevic T, Stolte J, Benes V, Dekens MPS (2010) Thyrotroph embryonic factor regulates light-induced transcription of repair genes in zebrafish embryonic cells. Screen 5.  https://doi.org/10.1371/journal.pone.0012542 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hear Res 69:236–242CrossRefPubMedGoogle Scholar
  23. Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346.  https://doi.org/10.1016/0006-8993(78)90723-0 CrossRefPubMedGoogle Scholar
  24. Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM (1980) Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193:529–539.  https://doi.org/10.1002/cne.901930214 CrossRefPubMedGoogle Scholar
  25. Grimsley CA, Sivaramakrishnan S (2014) Postnatal developmental changes in the medial nucleus of the trapezoid body in a mouse model of auditory pathology. Neurosci Lett 559:152–157.  https://doi.org/10.1016/j.neulet.2013.11.051 CrossRefPubMedGoogle Scholar
  26. Hayashi H, Nakagami H, Takeichi M, Shimamura M, Koibuchi N, Oiki E, Sato N, Koriyama H, Mori M, Gerardo Araujo R, Maeda A, Morishita R, Tamai K, Kaneda Y (2012) HIG1, a novel regulator of mitochondrial γ - secretase, maintains normal mitochondrial function. FASEB J 26:2306–2317.  https://doi.org/10.1096/fj.11-196063 CrossRefPubMedGoogle Scholar
  27. Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, Hikita M, Shinzawa-Itoh K, Takafuji K, Higo S, Kato H, Yamazaki S, Matsuoka K, Nakano A, Asanuma H, Asakura M, Minamino T, Goto YI, Ogura T, Kitakaze M, Komuro I, Sakata Y, Tsukihara T, Yoshikawa S, Takashima S (2015) Higd1a is a positive regulator of cytochrome c oxidase. Proc Natl Acad Sci 112:1553–1558.  https://doi.org/10.1073/pnas.1419767112 CrossRefPubMedGoogle Scholar
  28. Jacobson CD, Davis FC, Gorski RA (1985) Formation of the sexually dimorphic nucleus of the preoptic area: neuronal growth, migration and changes in cell number. Science 21:7–18Google Scholar
  29. Lattanzi W, Bernardini C, Gangitano C, Michetti F (2007) Hypoxia-like transcriptional activation in TMT-induced degeneration: microarray expression analysis on PC12 cells. J Neurochem 100:1688–1702.  https://doi.org/10.1111/j.1471-4159.2006.04331.x CrossRefPubMedGoogle Scholar
  30. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chi Chin M, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Feng Yuan X, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176.  https://doi.org/10.1038/nature05453 CrossRefPubMedGoogle Scholar
  31. Lenz KM, Nugent BM, McCarthy MM (2012) Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 6:1–13.  https://doi.org/10.3389/fnins.2012.00026 CrossRefGoogle Scholar
  32. Ling K, Hewitt CA, Beissbarth T, Hyde L, Banerjee K, Cheah P, Cannon PZ, Hahn CN, Thomas PQ, Smyth GK, Tan S, Thomas T, Scott HS (2009) Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling. Genome Biol 10(10):R104.  https://doi.org/10.1186/gb-2009-10-10-r104 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lowrie MB, Lawson SJ (2000) Cell death of spinal interneurones. Prog Neurobiol 61:543–555CrossRefPubMedGoogle Scholar
  34. Mody M, Cao Y, Cui Z, Tay KY, Shyong A, Shimizu E, Pham K, Schultz P, Welsh D, Tsien JZ (2001) Genome-wide gene expression profiles of the developing mouse hippocampus. Proc Natl Acad Sci U S A 98(15):8862–8867.  https://doi.org/10.1073/pnas.141244998 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pressler R, Auvin S (2013) Comparison of brain maturation among species: an example in translational research suggesting the possible use of bumetanide in newborn. Front Neurol 4:36.  https://doi.org/10.3389/fneur.2013.00036 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ramachandra R, Subramanian T (2011) Atlas of the neonatal rat brain. CRC Press, FloridaCrossRefGoogle Scholar
  37. Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533.  https://doi.org/10.1289/ehp.00108s3511 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320.  https://doi.org/10.1016/j.ab.2010.02.036 CrossRefPubMedGoogle Scholar
  39. Rubinow MJ, Juraska JM (2009) Neuron and glia numbers in the basolateral nucleus of the amygdala from preweaning through old age in male and female rats: a stereological study. J Comp Neurol 512:717–725.  https://doi.org/10.1002/cne.21924 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Slezak M, Pfrieger FW, Soltys Z (2006) Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris 99:84–91.  https://doi.org/10.1016/j.jphysparis.2005.12.082 CrossRefPubMedGoogle Scholar
  42. Stansberg C, Vik-mo AO, Holdhus R, Breilid H, Srebro B, Petersen K, Jorgensen HA, Jonassen I, Steen VM (2007) Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation 17:1–17.  https://doi.org/10.1186/1471-2164-8-94 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32:1363–1373.  https://doi.org/10.1128/MCB.06369-11 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Todd KJ, Serrano A, Lacaille J-C, Robitaille R (2006) Glial cells in synaptic plasticity. J Physiol Paris 99:75–83.  https://doi.org/10.1016/j.jphysparis.2005.12.002 CrossRefPubMedGoogle Scholar
  45. Tsukahara S, Hojo R, Kuroda Y, Fujimaki H (2008) Estrogen modulates Bcl-2 family protein expression in the sexually dimorphic nucleus of the preoptic area of postnatal rats. Neurosci Lett 432:58–63.  https://doi.org/10.1016/j.neulet.2007.12.006 CrossRefPubMedGoogle Scholar
  46. Vinay L, Ben-Mabrouk F, Brocard F, Clarac F, Jean-Xavier C, Pearlstein E, Pflieger JF (2005) Perinatal development of the motor systems involved in postural control. In: Neural Plast, vol 12, pp 131–139Google Scholar
  47. Vinay L, Brocard F, Simeoni-alias J, Clarac F (2000) Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res 53:635–647CrossRefGoogle Scholar
  48. Walton KD, Navarrete R (1991) Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord. J Physiol 433:283–305CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang J, Cao Y, Chen Y, Chen Y, Gardner P, Steiner DF (2006) Pancreatic beta cells lack a low glucose and O2-inducible mitochondrial protein that augments cell survival. Proc Natl Acad Sci U S A 103:10636–10641.  https://doi.org/10.1073/pnas.0604194103 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Watson RE, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159CrossRefPubMedGoogle Scholar
  51. Yao M, Chen G, Zhao P, Lu MH, Jian J, Liu MF, Yuan XB (2012) Transcriptome analysis of microRNAs in developing cerebral cortex of rat. BMC Genomics 13:232.  https://doi.org/10.1186/1471-2164-13-232 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, du T, Luo H, Su Z, Jones WD, Moland CL, Branham WS, Qian F, Ning B, Li Y, Hong H, Guo L, Mei N, Shi T, Wang KY, Wolfinger RD, Nikolsky Y, Walker SJ, Duerksen-Hughes P, Mason CE, Tong W, Thierry-Mieg J, Thierry-Mieg D, Shi L, Wang C (2014) A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun 5:3230.  https://doi.org/10.1038/ncomms4230 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sección Genética Evolutiva, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Sección Fisiología y Nutrición, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Departamento de Fisiología, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations