Advertisement

Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets

  • Harshini Chakravarthy
  • Vasudharani Devanathan
Article

Abstract

Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities. In this review, we delineate the sequence of initiating events leading to retinal degeneration in DR, considering neuronal dysfunction as a primary event. Key molecular mechanisms and potential biomarkers associated with retinal neuronal degeneration in diabetes are discussed. In addition to glial reactivity and inflammation in the diabetic retina, the contribution of neurotrophic factors, cell adhesion molecules, apoptosis markers, and G protein signaling to neurodegenerative pathways warrants further investigation. These studies could complement recent developments in innovative treatment strategies for diabetic retinopathy, such as targeting retinal neuroprotection, promoting neuronal regeneration, and attempts to re-program other retinal cell types into functional neurons. Indeed, several ongoing clinical trials are currently attempting treatment of retinal neurodegeneration by means of such novel therapeutic avenues. The aim of this article is to highlight the crucial role of neurodegeneration in early retinopathy progression, and to review the molecular basis of neuronal dysfunction as a first step toward developing early therapeutic interventions that can prevent permanent retinal damage in diabetes. ClinicalTrials.gov: NCT02471651, NCT01492400

Keywords

Diabetic retinopathy Neurodegeneration Neuronal regeneration Cell adhesion molecules 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abcouwer SF (2013) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol Suppl 1.  https://doi.org/10.4172/2155-9899
  2. Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190.  https://doi.org/10.1111/nyas.12412 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abu El-Asrar AM, Dralands L, Missotten L, Geboes K (2007) Expression of antiapoptotic and proapoptotic molecules in diabetic retinas. Eye 21:238–245.  https://doi.org/10.1038/sj.eye.6702225 CrossRefPubMedGoogle Scholar
  4. Abu-El-Asrar AM, Dralands L, Missotten L et al (2004) Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 45:2760–2766.  https://doi.org/10.1167/iovs.03-1392 CrossRefPubMedGoogle Scholar
  5. ACCORD Study Group, ACCORD Eye Study Group, Chew EY et al (2010) Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 363:233–244.  https://doi.org/10.1056/NEJMoa1001288 CrossRefGoogle Scholar
  6. Agardh CD, Agardh E, Zhang H, Ostenson CG (1997) Altered endothelial/pericyte ratio in Goto-Kakizaki rat retina. J Diabetes Complicat 11:158–162CrossRefGoogle Scholar
  7. Ahrén B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385.  https://doi.org/10.1038/nrd2782 CrossRefPubMedGoogle Scholar
  8. Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487.  https://doi.org/10.1056/NEJM199412013312203 CrossRefPubMedGoogle Scholar
  9. Aiello LP, Gardner TW, King GL et al (1998) Diabetic retinopathy. Diabetes Care 21:143–156CrossRefGoogle Scholar
  10. Aizu Y, Katayama H, Takahama S et al (2003) Topical instillation of ciliary neurotrophic factor inhibits retinal degeneration in streptozotocin-induced diabetic rats. Neuroreport 14:2067–2071.  https://doi.org/10.1097/01.wnr.0000097044.56589.78 CrossRefPubMedGoogle Scholar
  11. Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411.  https://doi.org/10.2337/db05-1635 CrossRefPubMedGoogle Scholar
  12. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239.  https://doi.org/10.1056/NEJMra1005073 CrossRefPubMedGoogle Scholar
  13. Arevalo JF, Maia M, Flynn HW et al (2008) Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol 92:213–216.  https://doi.org/10.1136/bjo.2007.127142 CrossRefPubMedGoogle Scholar
  14. Asher RA, Morgenstern DA, Moon LD, Fawcett JW (2001) Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog Brain Res 132:611–619.  https://doi.org/10.1016/S0079-6123(01)32106-4 CrossRefPubMedGoogle Scholar
  15. Augustin AJ, Kuppermann BD, Lanzetta P et al (2015) Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema: subgroup analysis of the MEAD study. BMC Ophthalmol 15:150.  https://doi.org/10.1186/s12886-015-0148-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-tie system. Nat Rev Mol Cell Biol 10:165–177.  https://doi.org/10.1038/nrm2639 CrossRefPubMedGoogle Scholar
  17. Bai F, Peng H, Etlinger JD, Zeman RJ (2010) Partial functional recovery after complete spinal cord transection by combined chondroitinase and clenbuterol treatment. Pflugers Arch 460:657–666.  https://doi.org/10.1007/s00424-010-0852-y CrossRefPubMedGoogle Scholar
  18. Ban CR, Twigg SM (2008) Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 4:575–596CrossRefGoogle Scholar
  19. Barber AC, Hippert C, Duran Y et al (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110:354–359.  https://doi.org/10.1073/pnas.1212677110 CrossRefPubMedGoogle Scholar
  20. Barber AJ, Antonetti DA, Kern TS et al (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46:2210–2218.  https://doi.org/10.1167/iovs.04-1340 CrossRefPubMedGoogle Scholar
  21. Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791.  https://doi.org/10.1172/JCI2425 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Barnea-Cramer AO, Wang W, Lu S-J et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:29784.  https://doi.org/10.1038/srep29784 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23:561–577.  https://doi.org/10.1016/j.preteyeres.2004.05.002 CrossRefPubMedGoogle Scholar
  24. Barouch FC, Miyamoto K, Allport JR et al (2000) Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 41:1153–1158PubMedGoogle Scholar
  25. Barros CS, Franco SJ, Müller U (2011) Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 3:a005108.  https://doi.org/10.1101/cshperspect.a005108 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Berezin V (ed) (2010) Structure and function of the neural cell adhesion molecule NCAM. Springer New York, New York, NYGoogle Scholar
  27. Blinder KJ, Dugel PU, Chen S et al (2017) Anti-VEGF treatment of diabetic macular edema in clinical practice: effectiveness and patterns of use (ECHO study report 1). Clin Ophthalmol Auckl NZ 11:393–401.  https://doi.org/10.2147/OPTH.S128509 CrossRefGoogle Scholar
  28. Bloodworth JM (1962) Diabetic retinopathy. Diabetes 11:1–22PubMedGoogle Scholar
  29. Bode C, Wolfrum U (2003) Caspase-3 inhibitor reduces apototic photoreceptor cell death during inherited retinal degeneration in tubby mice. Mol Vis 9:144–150PubMedGoogle Scholar
  30. Boyer DS, Yoon YH, Belfort R et al (2014) Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121:1904–1914.  https://doi.org/10.1016/j.ophtha.2014.04.024 CrossRefPubMedGoogle Scholar
  31. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol Chic Ill 1960 104:989–990CrossRefGoogle Scholar
  32. Bressler SB, Qin H, Beck RW et al (2012) Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol Chic Ill 1960 130:1153–1161.  https://doi.org/10.1001/archophthalmol.2012.1107 CrossRefGoogle Scholar
  33. Brown DM, Nguyen QD, Marcus DM et al (2013) Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120:2013–2022.  https://doi.org/10.1016/j.ophtha.2013.02.034 CrossRefPubMedGoogle Scholar
  34. Brown SP, He S, Masland RH (2000) Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 27:371–383CrossRefGoogle Scholar
  35. Bui BV, Loeliger M, Thomas M et al (2009) Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats. Exp Eye Res 88:1076–1083.  https://doi.org/10.1016/j.exer.2009.01.009 CrossRefPubMedGoogle Scholar
  36. Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57:1952–1965.  https://doi.org/10.2337/db07-1520 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417.  https://doi.org/10.1126/science.1190897 CrossRefPubMedGoogle Scholar
  38. Campochiaro PA, Khanani A, Singer M et al (2016) Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology 123:1722–1730.  https://doi.org/10.1016/j.ophtha.2016.04.025 CrossRefPubMedGoogle Scholar
  39. Cen L-P, Liang J-J, Chen J-H et al (2017) AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration. Neuroscience 343:472–482.  https://doi.org/10.1016/j.neuroscience.2016.12.027 CrossRefPubMedGoogle Scholar
  40. Chakravarthy H, Beli E, Navitskaya S et al (2016) Imbalances in mobilization and activation of pro-inflammatory and vascular reparative bone marrow-derived cells in diabetic retinopathy. PLoS One 11:e0146829.  https://doi.org/10.1371/journal.pone.0146829 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cheung AKH, Fung MKL, Lo ACY et al (2005) Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54:3119–3125CrossRefGoogle Scholar
  42. Chhablani J, Sharma A, Goud A et al (2015) Neurodegeneration in type 2 diabetes: evidence from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 56:6333–6338.  https://doi.org/10.1167/iovs.15-17334 CrossRefPubMedGoogle Scholar
  43. Chierzi S, Cenni MC, Maffei L et al (1998) Protection of retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vis Res 38:1537–1543.  https://doi.org/10.1016/S0042-6989(97)00332-5 CrossRefPubMedGoogle Scholar
  44. Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9:174–191CrossRefGoogle Scholar
  45. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Maguire MG, Martin DF et al (2016) Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123:1751–1761.  https://doi.org/10.1016/j.ophtha.2016.03.045 CrossRefGoogle Scholar
  46. Cotrim C, Toscano L, Messias A, et al (2017) Intravitreal use of bone marrow mononuclear fraction containing CD34+ stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol Volume 11:931–938. doi:  https://doi.org/10.2147/OPTH.S133502
  47. Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100.  https://doi.org/10.1016/j.visres.2017.03.013 CrossRefPubMedGoogle Scholar
  48. de Boer JF, Cense B, Park BH, et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069Google Scholar
  49. Devanathan V, Hagedorn I, Köhler D et al (2015) Platelet G i protein Gα i2 is an essential mediator of thrombo-inflammatory organ damage in mice. Proc Natl Acad Sci 112:6491–6496.  https://doi.org/10.1073/pnas.1505887112 CrossRefPubMedGoogle Scholar
  50. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S et al (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342:381–389.  https://doi.org/10.1056/NEJM200002103420603 CrossRefGoogle Scholar
  51. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP et al (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117:1064–1077.e35.  https://doi.org/10.1016/j.ophtha.2010.02.031 CrossRefGoogle Scholar
  52. Divya MS, Rasheed VA, Schmidt T et al (2017) Intraocular injection of ES cell-derived neural progenitors improve visual function in retinal ganglion cell-depleted mouse models. Front Cell Neurosci 11:295.  https://doi.org/10.3389/fncel.2017.00295 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Du Y, Cramer M, Lee CA et al (2015) Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. FASEB J Off Publ Fed Am Soc Exp Biol 29:2194–2204.  https://doi.org/10.1096/fj.14-269431 CrossRefGoogle Scholar
  54. Du Y, Tang J, Li G et al (2010) Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Invest Ophthalmol Vis Sci 51:2158–2164.  https://doi.org/10.1167/iovs.09-3674 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Duan X, Krishnaswamy A, De la Huerta I, Sanes JR (2014) Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158:793–807.  https://doi.org/10.1016/j.cell.2014.06.047 CrossRefPubMedGoogle Scholar
  56. Edelhauser HF, Rowe-Rendleman CL, Robinson MR et al (2010) Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci 51:5403–5420.  https://doi.org/10.1167/iovs.10-5392 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Falavarjani KG, Nguyen QD (2013) Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye Lond Engl 27:787–794.  https://doi.org/10.1038/eye.2013.107 CrossRefGoogle Scholar
  58. Falsini B, Porciatti V, Scalia G et al (1989) Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol Adv Ophthalmol 73:193–200CrossRefGoogle Scholar
  59. Feng L, Chen H, Yi J et al (2016) Long-term protection of retinal ganglion cells and visual function by brain-derived neurotrophic factor in mice with ocular hypertension. Invest Ophthalmol Vis Sci 57:3793–3802.  https://doi.org/10.1167/iovs.16-19825 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fong DS, Aiello L, Gardner TW et al (2003) Diabetic retinopathy. Diabetes Care 26(Suppl 1):S99–S102CrossRefGoogle Scholar
  61. Frank RN (2014) Systemic therapies for diabetic retinopathy: the accord eye study. Ophthalmology 121:2295–2296.  https://doi.org/10.1016/j.ophtha.2014.08.019 CrossRefPubMedGoogle Scholar
  62. Fuerst PG, Koizumi A, Masland RH, Burgess RW (2008) Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451:470–474.  https://doi.org/10.1038/nature06514 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gastinger MJ, Kunselman AR, Conboy EE et al (2008) Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci 49:2635–2642.  https://doi.org/10.1167/iovs.07-0683 CrossRefPubMedGoogle Scholar
  64. Gastinger MJ, Singh RSJ, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 47:3143–3150.  https://doi.org/10.1167/iovs.05-1376 CrossRefPubMedGoogle Scholar
  65. Gonzalez VH, Campbell J, Holekamp NM et al (2016) Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol 172:72–79.  https://doi.org/10.1016/j.ajo.2016.09.012 CrossRefPubMedGoogle Scholar
  66. Gorsuch RA, Lahne M, Yarka CE et al (2017) Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res 161:174–192.  https://doi.org/10.1016/j.exer.2017.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gratieri T, Gelfuso GM, Rocha EM et al (2010) A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV 75:186–193.  https://doi.org/10.1016/j.ejpb.2010.02.011 CrossRefGoogle Scholar
  68. Guo M, Liu H, Li S-S et al (2017) Low serum brain-derived neurotrophic factor but not brain-derived neurotrophic factor gene VAL66MET polymorphism is associated with diabetic retinopathy in Chinese type 2 diabetic patients. Retina Phila Pa 37:350–358.  https://doi.org/10.1097/IAE.0000000000001132 CrossRefGoogle Scholar
  69. Guo X, Liu X (2017) Nogo receptor knockdown and ciliary neurotrophic factor attenuate diabetic retinopathy in streptozotocin-induced diabetic rats. Mol Med Rep 16:2030–2036.  https://doi.org/10.3892/mmr.2017.6850 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Håkansson J, Ståhlberg A, Wolfhagen Sand F et al (2011) N-CAM exhibits a regulatory function in pathological angiogenesis in oxygen induced retinopathy. PLoS One 6:e26026.  https://doi.org/10.1371/journal.pone.0026026 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hammer SS, Busik JV (2017) The role of dyslipidemia in diabetic retinopathy. Vis Res 139:228–236.  https://doi.org/10.1016/j.visres.2017.04.010 CrossRefPubMedGoogle Scholar
  72. Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med Camb Mass 1:527–534PubMedGoogle Scholar
  73. Harrison WW, Bearse MA, Ng JS et al (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52:772–777.  https://doi.org/10.1167/iovs.10-5931 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hernández C, Bogdanov P, Corraliza L, et al (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65:172–187. doi:  https://doi.org/10.2337/db15-0443
  75. Hernández C, García-Ramírez M, Corraliza L et al (2013) Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes. Diabetes 62:2569–2578.  https://doi.org/10.2337/db12-0926 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hinze A, Stolzing A (2011) Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. BMC Cell Biol 12:35.  https://doi.org/10.1186/1471-2121-12-35 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hirota K, Kaneko Y, Matsumoto G, Hanyu Y (2001) Cadherin expression during retinal regeneration in the adult newt. Zool Sci 18:145–149.  https://doi.org/10.2108/zsj.18.145 CrossRefGoogle Scholar
  78. Hombrebueno JR, Ali IH, Xu H, Chen M (2015) Sustained intraocular VEGF neutralization results in retinal neurodegeneration in the Ins2Akita diabetic mouse. Sci Rep 5.  https://doi.org/10.1038/srep18316
  79. Hu P, Thinschmidt JS, Yan Y et al (2013) CNS inflammation and bone marrow neuropathy in type 1 diabetes. Am J Pathol 183:1608–1620.  https://doi.org/10.1016/j.ajpath.2013.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Huang X, Zhou G, Wu W et al (2017) Genome editing abrogates angiogenesis in vivo. Nat Commun 8:112.  https://doi.org/10.1038/s41467-017-00140-3 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hui A, Sheardown H, Jones L (2012) Acetic and acrylic acid molecular imprinted model silicone hydrogel materials for ciprofloxacin-HCl delivery. Mater Basel Switz 5:85–107.  https://doi.org/10.3390/ma5010085 CrossRefGoogle Scholar
  82. Ivanova T, Jalil A, Antoniou Y et al (2016) Vitrectomy for primary symptomatic vitreous opacities: an evidence-based review. Eye Lond Engl 30:645–655.  https://doi.org/10.1038/eye.2016.30 CrossRefGoogle Scholar
  83. Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6:3031–3038CrossRefGoogle Scholar
  84. Jorstad NL, Wilken MS, Grimes WN et al (2017) Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548:103–107.  https://doi.org/10.1038/nature23283 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Joussen AM, Murata T, Tsujikawa A et al (2001) Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 158:147–152CrossRefGoogle Scholar
  86. Kern TS, Berkowitz BA (2015) Photoreceptors in diabetic retinopathy. J Diabetes Investig 6:371–380.  https://doi.org/10.1111/jdi.12312 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kern TS, Engerman RL (1996) A mouse model of diabetic retinopathy. Arch Ophthalmol Chic Ill 1960 114:986–990CrossRefGoogle Scholar
  88. Kern TS, Tang J, Berkowitz BA (2010) Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 16:2121–2131PubMedPubMedCentralGoogle Scholar
  89. Khalaf N, Helmy H, Labib H et al (2017) Role of angiopoietins and Tie-2 in diabetic retinopathy. Electron Physician 9:5031–5035.  https://doi.org/10.19082/5031 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037–5044CrossRefGoogle Scholar
  91. Kim Y-H, Kim Y-S, Park C-H et al (2008) Protein kinase C-δ mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes 57:2181–2190.  https://doi.org/10.2337/db07-1431 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kiss S, Berenberg TL (2014) Ultra widefield fundus imaging for diabetic retinopathy. Curr Diab Rep 14:514.  https://doi.org/10.1007/s11892-014-0514-0 CrossRefPubMedGoogle Scholar
  93. Klassen HJ, Ng TF, Kurimoto Y et al (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45:4167–4173.  https://doi.org/10.1167/iovs.04-0511 CrossRefPubMedGoogle Scholar
  94. Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol Chic Ill 1960 102:527–532CrossRefGoogle Scholar
  95. Kohner EM (2008) Microvascular disease: what does the UKPDS tell us about diabetic retinopathy? Diabet Med J Br Diabet Assoc 25(Suppl 2):20–24.  https://doi.org/10.1111/j.1464-5491.2008.02505.x CrossRefGoogle Scholar
  96. Kowluru A (2010) Small G proteins in islet beta-cell function. Endocr Rev 31:52–78.  https://doi.org/10.1210/er.2009-0022 CrossRefPubMedGoogle Scholar
  97. Kowluru A (2017) Role of G-proteins in islet function in health and diabetes. Diabetes Obes Metab 19(Suppl 1):63–75.  https://doi.org/10.1111/dom.13011 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kowluru A, Kowluru RA, Yamazaki A (1992) Functional alterations of G-proteins in diabetic rat retina: a possible explanation for the early visual abnormalities in diabetes mellitus. Diabetologia 35:624–631CrossRefGoogle Scholar
  99. Krishnaswamy A, Yamagata M, Duan X et al (2015) Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature 524:466–470.  https://doi.org/10.1038/nature14682 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406.  https://doi.org/10.1016/j.preteyeres.2012.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lai AKW, Lo ACY (2013) Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013:106594.  https://doi.org/10.1155/2013/106594 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lee VK, Hosking BM, Holeniewska J et al (2018) BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Diabetologia.  https://doi.org/10.1007/s00125-018-4696-x CrossRefGoogle Scholar
  103. Leow CC, Coffman K, Inigo I et al (2012) MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol 40:1321–1330.  https://doi.org/10.3892/ijo.2012.1366 CrossRefPubMedGoogle Scholar
  104. Li T, Hu J, Du S, et al (2014) ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91- dependent VEGF release in streptozotocin-induced diabetes. Mol Vis 13Google Scholar
  105. Li X, Ma W, Zhuo Y et al (2010) Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons. Invest Ophthalmol Vis Sci 51:516–525.  https://doi.org/10.1167/iovs.09-3822 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Lieth E, Gardner TW, Barber AJ et al (2000) Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol 28:3–8CrossRefGoogle Scholar
  107. Liu Q, Londraville RL, Azodi E et al (2002) Up-regulation of cadherin-2 and cadherin-4 in regenerating visual structures of adult zebrafish. Exp Neurol 177:396–406CrossRefGoogle Scholar
  108. Liu X, Zuo Z, Liu W et al (2014) Upregulation of Nogo receptor expression induces apoptosis of retinal ganglion cells in diabetic rats. Neural Regen Res 9:815–820.  https://doi.org/10.4103/1673-5374.131597 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Liu Y, Leo LF, McGregor C et al (2012) Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice. Mol Med Camb Mass 18:1387–1401.  https://doi.org/10.2119/molmed.2012.00008 CrossRefPubMedGoogle Scholar
  110. Lobanovskaya N, Zharkovsky T, Jaako K et al (2015) PSA modification of NCAM supports the survival of injured retinal ganglion cells in adulthood. Brain Res 1625:9–17.  https://doi.org/10.1016/j.brainres.2015.08.008 CrossRefPubMedGoogle Scholar
  111. Loeliger MM, Briscoe T, Rees SM (2008) BDNF increases survival of retinal dopaminergic neurons after prenatal compromise. Invest Ophthalmol Vis Sci 49:1282–1289.  https://doi.org/10.1167/iovs.07-0521 CrossRefPubMedGoogle Scholar
  112. Lövestam-Adrian M, Agardh E (2000) Photocoagulation of diabetic macular oedema—complications and visual outcome. Acta Ophthalmol Scand 78:667–671CrossRefGoogle Scholar
  113. Luke MP, LeVatte TL, O’Reilly AM et al (2016a) Effect of NCAM on aged-related deterioration in vision. Neurobiol Aging 41:93–106.  https://doi.org/10.1016/j.neurobiolaging.2016.02.003 CrossRefPubMedGoogle Scholar
  114. Luke MP-S, LeVatte TL, Rutishauser U et al (2016b) Polysialylated neural cell adhesion molecule protects against light-induced retinal degeneration. Invest Ophthalmol Vis Sci 57:5066–5075.  https://doi.org/10.1167/iovs.16-19499 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Luz-Madrigal A, Grajales-Esquivel E, McCorkle A et al (2014) Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol 12:28.  https://doi.org/10.1186/1741-7007-12-28 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ly A, Yee P, Vessey KA et al (2011) Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Invest Ophthalmol Vis Sci 52:9316–9326.  https://doi.org/10.1167/iovs.11-7879 CrossRefPubMedGoogle Scholar
  117. Lynch SK, Abràmoff MD (2017) Diabetic retinopathy is a neurodegenerative disorder. Vis Res 139:101–107.  https://doi.org/10.1016/j.visres.2017.03.003 CrossRefPubMedGoogle Scholar
  118. Ma W, Yan R-T, Li X, Wang S-Z (2009) Reprogramming retinal pigment epithelium to differentiate toward retinal neurons with Sox2. Stem Cells Dayt Ohio 27:1376–1387.  https://doi.org/10.1002/stem.48 CrossRefGoogle Scholar
  119. MacLaren RE, Pearson RA (2007) Stem cell therapy and the retina. Eye Lond Engl 21:1352–1359.  https://doi.org/10.1038/sj.eye.6702842 CrossRefGoogle Scholar
  120. Marth C, Vergote I, Scambia G et al (2017) ENGOT-ov-6/TRINOVA-2: randomised, double-blind, phase 3 study of pegylated liposomal doxorubicin plus trebananib or placebo in women with recurrent partially platinum-sensitive or resistant ovarian cancer. Eur J Cancer Oxf Engl 1990 70:111–121.  https://doi.org/10.1016/j.ejca.2016.09.004 CrossRefGoogle Scholar
  121. Martin PM, Roon P, Van Ells TK et al (2004) Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45:3330–3336.  https://doi.org/10.1167/iovs.04-0247 CrossRefPubMedGoogle Scholar
  122. Masser DR, VanGuilder Starkey HD, Bixler GV et al (2014) Insulin treatment normalizes retinal neuroinflammation but not markers of synapse loss in diabetic rats. Exp Eye Res 125:95–106.  https://doi.org/10.1016/j.exer.2014.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Mathews MK, Guo Y, Langenberg P, Bernstein SL (2015) Ciliary neurotrophic factor (CNTF)-mediated ganglion cell survival in a rodent model of non-arteritic anterior ischaemic optic neuropathy (NAION). Br J Ophthalmol 99:133–137.  https://doi.org/10.1136/bjophthalmol-2014-305969 CrossRefPubMedGoogle Scholar
  124. McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 147:642–653PubMedPubMedCentralGoogle Scholar
  125. McVicar CM, Hamilton R, Colhoun LM et al (2011) Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 60:2995–3005.  https://doi.org/10.2337/db11-0026 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Meyer-Rüsenberg B, Pavlidis M, Stupp T, Thanos S (2007) Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 245:1009–1018.  https://doi.org/10.1007/s00417-006-0489-x CrossRefGoogle Scholar
  127. Miyamoto K, Khosrof S, Bursell SE et al (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 96:10836–10841CrossRefGoogle Scholar
  128. Mohr S, Xi X, Tang J, Kern TS (2002) Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51:1172–1179CrossRefGoogle Scholar
  129. Murphy JA, Franklin TB, Rafuse VF, Clarke DB (2007a) The neural cell adhesion molecule is necessary for normal adult retinal ganglion cell number and survival. Mol Cell Neurosci 36:280–292.  https://doi.org/10.1016/j.mcn.2007.07.006 CrossRefPubMedGoogle Scholar
  130. Murphy JA, Hartwick ATE, Rutishauser U, Clarke DB (2009) Endogenous polysialylated neural cell adhesion molecule enhances the survival of retinal ganglion cells. Invest Ophthalmol Vis Sci 50:861–869.  https://doi.org/10.1167/iovs.08-2334 CrossRefPubMedGoogle Scholar
  131. Murphy JA, Nickerson PEB, Clarke DB (2007b) Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 1163:21–32.  https://doi.org/10.1016/j.brainres.2007.05.069 CrossRefPubMedGoogle Scholar
  132. Mysona BA, Shanab AY, Elshaer SL, El-Remessy AB (2014) Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Rev Ophthalmol 9:99–107.  https://doi.org/10.1586/17469899.2014.903157 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Ng JS, Bearse MA, Schneck ME et al (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49:1622–1628.  https://doi.org/10.1167/iovs.07-1157 CrossRefPubMedGoogle Scholar
  134. Nguyen QD, Brown DM, Marcus DM et al (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119:789–801.  https://doi.org/10.1016/j.ophtha.2011.12.039 CrossRefPubMedGoogle Scholar
  135. Ola MS, Nawaz MI, El-Asrar AA et al (2013) Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats. Cell Mol Neurobiol 33:359–367.  https://doi.org/10.1007/s10571-012-9901-8 CrossRefPubMedGoogle Scholar
  136. Oliner JD, Bready J, Nguyen L et al (2012) AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits angiogenesis in models of ocular neovascular diseases. Invest Ophthalmol Vis Sci 53:2170–2180.  https://doi.org/10.1167/iovs.11-7381 CrossRefPubMedGoogle Scholar
  137. Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diab Rep 17:93.  https://doi.org/10.1007/s11892-017-0913-0 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Osaadon P, Fagan XJ, Lifshitz T, Levy J (2014) A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye Lond Engl 28:510–520.  https://doi.org/10.1038/eye.2014.13 CrossRefGoogle Scholar
  139. Oshitari T, Yoshida-Hata N, Yamamoto S (2010) Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose. Brain Res 1346:43–51.  https://doi.org/10.1016/j.brainres.2010.05.073 CrossRefPubMedGoogle Scholar
  140. Park H-YL, Kim JH, Park CK (2014) Neuronal cell death in the inner retina and the influence of vascular endothelial growth factor inhibition in a diabetic rat model. Am J Pathol 184:1752–1762.  https://doi.org/10.1016/j.ajpath.2014.02.016 CrossRefPubMedGoogle Scholar
  141. Park SS, Bauer G, Abedi M et al (2015) Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci 56:81–89.  https://doi.org/10.1167/iovs.14-15415 CrossRefPubMedCentralGoogle Scholar
  142. Patel JI, Hykin PG, Gregor ZJ et al (2005) Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol 89:480–483.  https://doi.org/10.1136/bjo.2004.049940 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Pearson CS, Mencio CP, Barber AC, et al (2018) Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. eLife 7:. doi:  https://doi.org/10.7554/eLife.37139
  144. Pearson RA, Barber AC, Rizzi M et al (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99–103.  https://doi.org/10.1038/nature10997 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Pearson RA, Hippert C, Graca AB, Barber AC (2014) Photoreceptor replacement therapy: challenges presented by the diseased recipient retinal environment. Vis Neurosci 31:333–344.  https://doi.org/10.1017/S0952523814000200 CrossRefPubMedGoogle Scholar
  146. Phipps JA, Fletcher EL, Vingrys AJ (2004) Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci 45:4592–4600.  https://doi.org/10.1167/iovs.04-0842 CrossRefPubMedGoogle Scholar
  147. Pollak J, Wilken MS, Ueki Y et al (2013) ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Dev Camb Engl 140:2619–2631.  https://doi.org/10.1242/dev.091355 CrossRefGoogle Scholar
  148. Poulaki V, Qin W, Joussen AM et al (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109:805–815.  https://doi.org/10.1172/JCI13776 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Qin Y, Xu G, Wang W (2006) Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats. Curr Eye Res 31:967–974.  https://doi.org/10.1080/02713680600987674 CrossRefPubMedGoogle Scholar
  150. Rangasamy S, Srinivasan R, Maestas J et al (2011) A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci 52:3784–3791.  https://doi.org/10.1167/iovs.10-6386 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Regula JT, Lundh von Leithner P, Foxton R et al (2016) Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med 8:1265–1288.  https://doi.org/10.15252/emmm.201505889 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Reinhard J, Roll L, Faissner A (2017) Tenascins in retinal and optic nerve neurodegeneration. Front Integr Neurosci 11.  https://doi.org/10.3389/fnint.2017.00030
  153. Reiter CEN, Wu X, Sandirasegarane L et al (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55:1148–1156CrossRefGoogle Scholar
  154. Robinson R, Barathi VA, Chaurasia SS et al (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456.  https://doi.org/10.1242/dmm.009597 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Romano MR, Biagioni F, Besozzi G et al (2012) Effects of bevacizumab on neuronal viability of retinal ganglion cells in rats. Brain Res 1478:55–63.  https://doi.org/10.1016/j.brainres.2012.08.014 CrossRefPubMedGoogle Scholar
  156. Roy S, Amin S, Roy S (2016) Retinal fibrosis in diabetic retinopathy. Exp Eye Res 142:71–75.  https://doi.org/10.1016/j.exer.2015.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Roy S, Kern TS, Song B, Stuebe C (2017) Mechanistic insights into pathological changes in the diabetic retina: Implications for Targeting Diabetic Retinopathy. Am J Pathol 187:9–19.  https://doi.org/10.1016/j.ajpath.2016.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41:1971–1980PubMedGoogle Scholar
  159. Satarian L, Nourinia R, Safi S et al (2017) Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study. J Ophthalmic Vis Res 12:58–64.  https://doi.org/10.4103/2008-322X.200164 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Schmidt-Erfurth U, Lang GE, Holz FG et al (2014) Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology 121:1045–1053.  https://doi.org/10.1016/j.ophtha.2013.11.041 CrossRefPubMedGoogle Scholar
  161. Schultz DR, Harrington WJ (2003) Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 32:345–369.  https://doi.org/10.1053/sarh.2003.50005 CrossRefPubMedGoogle Scholar
  162. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet Lond Engl 385:509–516.  https://doi.org/10.1016/S0140-6736(14)61376-3 CrossRefGoogle Scholar
  163. Seiler MJ, Lin RE, McLelland BT et al (2017) Vision recovery and connectivity by fetal retinal sheet transplantation in an immunodeficient retinal degenerate rat model. Invest Ophthalmol Vis Sci 58:614–630.  https://doi.org/10.1167/iovs.15-19028 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Sekiguchi H, Ii M, Losordo DW (2009) The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J Cell Physiol 219:235–242.  https://doi.org/10.1002/jcp.21672 CrossRefPubMedGoogle Scholar
  165. Sen S, Merchan J, Dean J et al (2010) Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. Hum Gene Ther 21:1327–1334.  https://doi.org/10.1089/hum.2010.006 CrossRefPubMedGoogle Scholar
  166. Simó R (2017) Topical administration of somatostatin and brimonidine in the early stages of diabetic retinopathyGoogle Scholar
  167. Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) (2012) Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications. Br J Ophthalmol 96:1285–1290.  https://doi.org/10.1136/bjophthalmol-2012-302005 CrossRefPubMedGoogle Scholar
  168. Singh MS, Charbel Issa P, Butler R et al (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 110:1101–1106.  https://doi.org/10.1073/pnas.1119416110 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Singh R, Cuzzani O, Binette F et al (2018) Pluripotent stem cells for retinal tissue engineering: current status and future prospects. Stem Cell Rev 14:463–483.  https://doi.org/10.1007/s12015-018-9802-4 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Smith SB, Duplantier J, Dun Y et al (2008) In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine. Invest Ophthalmol Vis Sci 49:4154–4161.  https://doi.org/10.1167/iovs.08-1824 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Smith SB, Wang J, Cui X et al (2018) Sigma 1 receptor: a novel therapeutic target in retinal disease. Prog Retin Eye Res.  https://doi.org/10.1016/j.preteyeres.2018.07.003
  172. Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 113:E2655–E2664.  https://doi.org/10.1073/pnas.1522014113 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Stewart MW (2012) Corticosteroid use for diabetic macular edema: old fad or new trend? Curr Diab Rep 12:364–375.  https://doi.org/10.1007/s11892-012-0281-8 CrossRefPubMedGoogle Scholar
  174. Thomas CN, Berry M, Logan A et al (2017) Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 3:17032.  https://doi.org/10.1038/cddiscovery.2017.32 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tochitsky I, Trautman J, Gallerani N et al (2017) Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci Rep 7:45487.  https://doi.org/10.1038/srep45487 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Ueki Y, Wilken MS, Cox KE et al (2015) Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proc Natl Acad Sci U S A 112:13717–13722.  https://doi.org/10.1073/pnas.1510595112 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Unsicker K (2013) Neurotrophic molecules in the treatment of neurodegenerative disease with focus on the retina: status and perspectives. Cell Tissue Res 353:205–218.  https://doi.org/10.1007/s00441-013-1585-y CrossRefPubMedGoogle Scholar
  178. Vadas O, Dbouk HA, Shymanets A et al (2013) Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110:18862–18867.  https://doi.org/10.1073/pnas.1304801110 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Vagima Y, Lapid K, Kollet O et al (2011) Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol Clifton NJ 750:277–289.  https://doi.org/10.1007/978-1-61779-145-1_19 CrossRefGoogle Scholar
  180. van Dijk HW, Verbraak FD, Stehouwer M et al (2011) Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis Res 51:224–228.  https://doi.org/10.1016/j.visres.2010.08.024 CrossRefPubMedGoogle Scholar
  181. van Gurp M, Festjens N, van Loo G, et al (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497Google Scholar
  182. Vander JF, Duker JS, Benson WE et al (1991) Long-term stability and visual outcome after favorable initial response of proliferative diabetic retinopathy to panretinal photocoagulation. Ophthalmology 98:1575–1579CrossRefGoogle Scholar
  183. Venugopalan P, Wang Y, Nguyen T et al (2016) Transplanted neurons integrate into adult retinas and respond to light. Nat Commun 7:10472.  https://doi.org/10.1038/ncomms10472 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Vigneswara V, Ahmed Z (2016) Long-term neuroprotection of retinal ganglion cells by inhibiting caspase-2. Cell Death Discov 2:16044.  https://doi.org/10.1038/cddiscovery.2016.44 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Vigneswara V, Akpan N, Berry M et al (2014) Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain J Neurol 137:1656–1675.  https://doi.org/10.1093/brain/awu037 CrossRefGoogle Scholar
  186. Wallick CJ, Hansen RN, Campbell J et al (2015) Comorbidity and health care resource use among commercially insured non-elderly patients with diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 46:744–751.  https://doi.org/10.3928/23258160-20150730-09 CrossRefPubMedGoogle Scholar
  187. Wang J, Saul A, Roon P, Smith SB (2016) Activation of the molecular chaperone, sigma 1 receptor, preserves cone function in a murine model of inherited retinal degeneration. Proc Natl Acad Sci U S A 113:E3764–E3772.  https://doi.org/10.1073/pnas.1521749113 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wang Q, Gorbey S, Pfister F et al (2011) Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 27:769–782.  https://doi.org/10.1159/000330085 CrossRefGoogle Scholar
  189. Wang S-Z, Yan R-T (2014) The retinal pigment epithelium: a convenient source of new photoreceptor cells? J Ophthalmic Vis Res 9:83–93PubMedPubMedCentralGoogle Scholar
  190. Wilkinson CP, Ferris FL, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110:1677–1682.  https://doi.org/10.1016/S0161-6420(03)00475-5 CrossRefPubMedGoogle Scholar
  191. Williams R, Airey M, Baxter H et al (2004) Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye Lond Engl 18:963–983.  https://doi.org/10.1038/sj.eye.6701476 CrossRefGoogle Scholar
  192. Wolter JR (1961) Diabetic retinopathy. Am J Ophthalmol 51:1123–1141PubMedGoogle Scholar
  193. Wu FTH, Man S, Xu P et al (2016) Efficacy of cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res 76:6988–7000.  https://doi.org/10.1158/0008-5472.CAN-16-0888 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Xie B, Jiao Q, Cheng Y et al (2012) Effect of pigment epithelium-derived factor on glutamate uptake in retinal Muller cells under high-glucose conditions. Invest Ophthalmol Vis Sci 53:1023–1032.  https://doi.org/10.1167/iovs.11-8695 CrossRefPubMedGoogle Scholar
  195. Yang G, Masland RH (1994) Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J Neurosci 14:5267–5280CrossRefGoogle Scholar
  196. Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867.  https://doi.org/10.2147/DDDT.S97653 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564.  https://doi.org/10.2337/dc11-1909 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yoshida Y, Yamagishi S-I, Matsui T et al (2009) Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy. Diabetes Metab Res Rev 25:678–686.  https://doi.org/10.1002/dmrr.1007 CrossRefPubMedGoogle Scholar
  199. Yoshii C, Ueda Y, Okamoto M, Araki M (2007) Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol 303:45–56.  https://doi.org/10.1016/j.ydbio.2006.11.024 CrossRefPubMedGoogle Scholar
  200. Yue L, Weiland JD, Roska B, Humayun MS (2016) Retinal stimulation strategies to restore vision: fundamentals and systems. Prog Retin Eye Res 53:21–47.  https://doi.org/10.1016/j.preteyeres.2016.05.002 CrossRefPubMedGoogle Scholar
  201. Zhang J, Wu Y, Jin Y et al (2008) Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci 49:732–742.  https://doi.org/10.1167/iovs.07-0721 CrossRefPubMedGoogle Scholar
  202. Zhang SX, Wang JJ, Gao G et al (2006) Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J Off Publ Fed Am Soc Exp Biol 20:323–325.  https://doi.org/10.1096/fj.05-4313fje CrossRefGoogle Scholar
  203. Zhang W-M, Zhang Z-R, Zhang Y-G, Gao Y-S (2016) Neural stem cell-based intraocular administration of pigment epithelium-derived factor promotes retinal ganglion cell survival and axon regeneration after optic nerve crush injury in rat: an experimental study. Iran J Med Sci 41:382–390Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyIndian Institute of Science Education and Research (IISER)TirupatiIndia

Personalised recommendations