Journal of Molecular Neuroscience

, Volume 66, Issue 1, pp 114–120 | Cite as

Neuromuscular Junction Morphology and Gene Dysregulation in the Wobbler Model of Spinal Neurodegeneration

  • Whitney A. Ratliff
  • Jessica N. Saykally
  • Michael J. Kane
  • Bruce A. Citron


Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disease for which there is currently no effective treatment. The progression of ALS includes loss of motor neurons controlling the voluntary muscles, with much of this loss occurring at the neuromuscular junction. In an effort to better understand changes at the neuromuscular junction, we utilized the wobbler mouse model of motor neuron loss. We examined biceps and end plate morphologies and monitored selected factors involved in end plate function. Structural volumes were determined from 3D reconstructions that were generated for the end plates. Wobbler mice exhibited size reductions of both the muscle fibers and the end plates within the biceps, and we found that the end plate volumes were the most sensitive indicator of the degeneration. Concurrently, we found increases in calcitonin gene-related peptide (CGRP) and its receptor in wobbler biceps and spinal cord. We also found increases in gene expression of two acetylcholine receptors within the wobbler biceps, which may be a result of altered CGRP/CALCRL (calcitonin receptor-like receptor) expression.


Neuromuscular junction End plate Calcitonin gene-related peptide (CGRP) Motor neuron disease Wobbler mice 



This article is dedicated to the memories of Drs. Hugo L. Fernandez and Irving Nadelhaft, instrumental in this field, and wonderful colleagues. We thank Haris Hatic, Andrea Smith, and John S. Dennis for excellent technical assistance. Useful, early discussions were obtained from Irving Nadelhaft and Hugo Fernandez.


This study was supported by the Department of Veterans Affairs (Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development (I01RX001520)), the Assistant Secretary of Defense for Health Affairs through the Congressionally Directed Gulf War Illness Research Program (W81XWH-16-1-0626), the Florida Department of Health James and Esther King Biomedical Research Program (4KB14), The Bay Pines Foundation, and the Veterans Bio-Medical Research Institute.

Compliance with Ethical Standards

All experiments were performed in accordance with local and national guidelines.


The contents do not represent the views of the Department of Veterans Affairs or the US Government, and the opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

Supplementary material

12031_2018_1153_Fig5_ESM.png (422 kb)
Supplementary Figure 1

(PNG 421 kb)

12031_2018_1153_MOESM1_ESM.eps (559 kb)
High Resolution image (EPS 558 kb)
12031_2018_1153_MOESM2_ESM.avi (1.9 mb)
Supplementary Video 1A (AVI 1987 kb)
12031_2018_1153_MOESM3_ESM.avi (2.1 mb)
Supplementary Video 1B (AVI 2152 kb)
12031_2018_1153_MOESM4_ESM.avi (1.4 mb)
Supplementary Video 1C (AVI 1425 kb)
12031_2018_1153_MOESM5_ESM.avi (1.2 mb)
Supplementary Video 1D (AVI 1236 kb)


  1. Baulac M, Rieger F, Meininger V (1983) The loss of motorneurons corresponding to specific muscles in the wobbler mutant mouse. Neurosci Lett 37:99–104CrossRefPubMedGoogle Scholar
  2. Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232CrossRefPubMedGoogle Scholar
  4. Dennis JS, Citron BA (2009) Wobbler mice modeling motor neuron disease display elevated transactive response DNA binding protein. Neuroscience 158:745–750CrossRefPubMedGoogle Scholar
  5. Duchen LW, Strich SJ (1968) An hereditary motor neurone disease with progressive denervation of muscle in the mouse: the mutant ‘wobbler’. J Neurol Neurosurg Psychiatry 31:535–542CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fernandez HL, Ross GS, Nadelhaft I (1999) Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain Res 844:83–97CrossRefPubMedGoogle Scholar
  7. Fernandez HL, Smith A, Dennis JS, Citron BA (2011) Calcitonin receptor-like receptor expression in rat skeletal muscle fibers. Brain Res 1371:1–6CrossRefPubMedGoogle Scholar
  8. Fontaine B, Klarsfeld A, Changeux JP (1987) Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor alpha-subunit mRNA levels by distinct intracellular pathways. J Cell Biol 105:1337–1342CrossRefPubMedGoogle Scholar
  9. Fontaine B, Klarsfeld A, Hokfelt T, Changeux JP (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci Lett 71:59–65CrossRefPubMedGoogle Scholar
  10. Freeland K, Liu YZ, Latchman DS (2000) Distinct signalling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor. Biochem J 345(Pt 2):233–238CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hantai D, Akaaboune M, Lagord C, Murawsky M, Houenou LJ, Festoff BW, Vaught JL, Rieger F, Blondet B (1995) Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J Neurol Sci 129(Suppl):122–126CrossRefPubMedGoogle Scholar
  12. Kato T, Hirano A, Manaka H, Sasaki H, Katagiri T, Kawanami T, Shikama Y, Seino T, Sasaki H (1991) Calcitonin gene-related peptide immunoreactivity in familial amyotrophic lateral sclerosis. Neurosci Lett 133:163–167CrossRefPubMedGoogle Scholar
  13. Kostrominova TY, Pasyk KA, Van Remmen H, Richardson AG, Faulkner JA (2007) Adaptive changes in structure of skeletal muscles from adult Sod1 homozygous knockout mice. Cell Tissue Res 327:595–605CrossRefPubMedGoogle Scholar
  14. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208CrossRefGoogle Scholar
  15. Mehta P, Kaye W, Bryan L, Larson T, Copeland T, Wu J, Muravov O, Horton K (2016) Prevalence of amyotrophic lateral sclerosis—United States, 2012-2013. MMWR Surveill Summ 65:1–12CrossRefPubMedGoogle Scholar
  16. Melki J, Blondet B, Pincon-Raymond M, Dreyfus P, Rieger F (1991) Generalized molecular defects of the neuromuscular junction in skeletal muscle of the wobbler mutant mouse. Neurochem Int 18:425–433CrossRefPubMedGoogle Scholar
  17. Mora M, Marchi M, Polak JM, Gibson SJ, Cornelio F (1989) Calcitonin gene-related peptide immunoreactivity at the human neuromuscular junction. Brain Res 492:404–407CrossRefPubMedGoogle Scholar
  18. Narai H, Manabe Y, Nagai M, Nagano I, Ohta Y, Murakami T, Takehisa Y, Kamiya T, Abe K (2009) Early detachment of neuromuscular junction proteins in ALS mice with SODG93A mutation. Neurol Int 1:57–60CrossRefGoogle Scholar
  19. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefPubMedGoogle Scholar
  20. Oda K (1985) The relationship between motor endplate size and muscle fiber diameter in different muscle groups of the rat. Jpn J Physiol 35:1091–1095CrossRefPubMedGoogle Scholar
  21. Popper P, Micevych PE (1989) Localization of calcitonin gene-related peptide and its receptors in a striated muscle. Brain Res 496:180–186CrossRefPubMedGoogle Scholar
  22. Rathke-Hartlieb S, Schmidt VC, Jockusch H, Schmitt-John T, Bartsch JW (1999) Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. Neuroreport 10:3411–3416CrossRefPubMedGoogle Scholar
  23. Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schutz B (2017) Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 74:339–358CrossRefPubMedGoogle Scholar
  24. Ringer C, Weihe E, Schutz B (2012) Calcitonin gene-related peptide expression levels predict motor neuron vulnerability in the superoxide dismutase 1-G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 45:547–554CrossRefPubMedGoogle Scholar
  25. Schmitt-John T, Drepper C, Mussmann A, Hahn P, Kuhlmann M, Thiel C, Hafner M, Lengeling A, Heimann P, Jones JM, Meisler MH, Jockusch H (2005) Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat Genet 37:1213–1215CrossRefPubMedGoogle Scholar
  26. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  27. Takami K, Kawai Y, Shiosaka S, Lee Y, Girgis S, Hillyard CJ, MacIntyre I, Emson PC, Tohyama M (1985a) Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide- and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguus nuclei. Brain Res 328:386–389CrossRefPubMedGoogle Scholar
  28. Takami K, Kawai Y, Uchida S, Tohyama M, Shiotani Y, Yoshida H, Emson PC, Girgis S, Hillyard CJ, MacIntyre I (1985b) Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci Lett 60:227–230CrossRefPubMedGoogle Scholar
  29. Talbot K (2009) Motor neuron disease: the bare essentials. Pract Neurol 9:303–309CrossRefPubMedGoogle Scholar
  30. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995CrossRefPubMedGoogle Scholar
  31. Ulbrich M, Schmidt VC, Ronsiek M, Mussmann A, Bartsch JW, Augustin M, Jockusch H, Schmitt-John T (2002) Genetic modifiers that aggravate the neurological phenotype of the wobbler mouse. Neuroreport 13:535–539CrossRefPubMedGoogle Scholar
  32. Vergani L, Finco C, Di Giulio AM, Muller EE, Gorio A (1997) Effects of low doses of glycosaminoglycans and insulin-like growth factor-I on motor neuron disease in wobbler mouse. Neurosci Lett 228:41–44CrossRefPubMedGoogle Scholar
  33. Vlug AS, Teuling E, Haasdijk ED, French P, Hoogenraad CC, Jaarsma D (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22:1881–1894CrossRefPubMedGoogle Scholar
  34. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A (2015) A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 6:171CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang Y, Ba Y, Liu C, Sun G, Ding L, Gao S, Hao J, Yu Z, Zhang J, Zen K, Tong Z, Xiang Y, Zhang CY (2007) PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway. Cell Res 17:363–373CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology, Research and DevelopmentBay Pines VA Healthcare SystemBay PinesUSA
  2. 2.Department of Molecular MedicineUSF College of MedicineTampaUSA
  3. 3.Biological Basis of Behavior ProgramUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Laboratory of Molecular Biology, Research & Development (Mailstop 15)VA New Jersey Health Care SystemEast OrangeUSA

Personalised recommendations