Advertisement

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction

  • Olivia W. Miles
  • Victor May
  • Sayamwong E. Hammack
Article

Abstract

While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.

Keywords

PACAP BNST Reinstatement Addiction 

References

  1. Alheid GF, Beltramino CA, De Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala. Neuroscience 84(4):967–996PubMedCrossRefGoogle Scholar
  2. Arató M, Bánki CM, Bissette G, Nemeroff CB (1989) Elevated CSF CRF in suicide victims. Biol Psychiatry 25(3):355–359PubMedCrossRefGoogle Scholar
  3. Avery SN, Clauss JA, Blackford JU (2016) The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology 41(1):126–141PubMedCrossRefGoogle Scholar
  4. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK et al (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatr 156(4):585–588PubMedGoogle Scholar
  5. Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557PubMedCrossRefGoogle Scholar
  6. Bangasser DA, Kawasumi Y (2015) Cognitive disruptions in stress-related psychiatric disorders: a role for corticotropin releasing factor (CRF). Horm Behav 76:125–135PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bertrand G, Puech R, Maisonnasse Y, Bockaert J, Loubatières-Mariani MM (1996) Comparative effects of PACAP and VIP on pancreatic endocrine secretions and vascular resistance in rat. Br J Pharmacol 117(4):764–770PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bouton ME (2014) Why behavior change is difficult to sustain. Prev Med 68:29–36PubMedCrossRefGoogle Scholar
  9. Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18(23):9766–9779PubMedCrossRefGoogle Scholar
  10. Braas KM, Rossignol TM, Girard BM, May V, Parsons RL (2004) Pituitary adenylate cyclase activating polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience 126(2):335–346PubMedCrossRefGoogle Scholar
  11. Breese GR, Sinha R, Heilig M (2011) Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse. Pharmacol Ther 129(2):149–171PubMedCrossRefGoogle Scholar
  12. Bruijnzeel AW, Small E, Pasek TM, Yamada H (2010) Corticotropin-releasing factor mediates the dysphoria-like state associated with alcohol withdrawal in rats. Behav Brain Res 210(2):288–291PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buffalari DM, Baldwin CK, Feltenstein MW, See RE (2012) Corticotrophin releasing factor (CRF) induced reinstatement of cocaine seeking in male and female rats. Physiol Behav 105(2):209–214PubMedCrossRefGoogle Scholar
  14. Caine SB, Heinrichs SC, Coffin VL, Koob GF (1995) Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res 692(1–2):47–56PubMedCrossRefGoogle Scholar
  15. Carlezon WA, Haile CN, Coopersmith R, Hayashi Y, Malinow R, Neve RL, Nestler EJ (2000) Distinct sites of opiate reward and aversion within the midbrain identified using a herpes simplex virus vector expressing GluR1. J Neurosci 20(5):RC62PubMedCrossRefGoogle Scholar
  16. Carroll ME, Comer SD (1996) Animal models of relapse. Exp Clin Psychopharmacol 4(1):11–18CrossRefGoogle Scholar
  17. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic–pituitary–adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27(8):2025–2034PubMedCrossRefGoogle Scholar
  18. Clason TA, Girard BM, May V, Parsons RL (2016) Activation of MEK/ERK signaling by PACAP in guinea pig cardiac neurons. J Mol Neurosci 59(2):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  19. Contarino A, Papaleo F (2005) The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal. Proc Natl Acad Sci U S A 102(51):18649–18654PubMedPubMedCentralCrossRefGoogle Scholar
  20. Crestani CC, Alves FH, Gomes FV, Resstel L, Correa F, Herman JP (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11(2):141–159PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35(1):105–135PubMedCrossRefGoogle Scholar
  22. Dedic N, Chen A, Deussing JM (2018) The CRF family of neuropeptides and their receptors-mediators of the central stress response. Curr Mol Pharmacol 11(1):4–31PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436(4):430–455PubMedCrossRefGoogle Scholar
  24. Dore R, Iemolo A, Smith KL, Wang X, Cottone P, Sabino V (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38(11):2160–2169PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dunn AJ, Berridge CW (1987) Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol Biochem Behav 27(4):685–691PubMedCrossRefGoogle Scholar
  26. Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev 15(2):71–100PubMedCrossRefGoogle Scholar
  27. Dunn AJ, File SE (1987) Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm Behav 21(2):193–202PubMedCrossRefGoogle Scholar
  28. Duvarci S, Bauer EP, Paré D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29(33):10357–10361PubMedPubMedCentralCrossRefGoogle Scholar
  29. Epstein DH, Willner-Reid J, Vahabzadeh M, Mezghanni M, Lin JL, Preston KL (2009) Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Arch Gen Psychiatry 66(1):88–94PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erb S, Stewart J (1999) A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. J Neurosci 19(20):RC35–RC35PubMedCrossRefGoogle Scholar
  31. Erb S, Shaham Y, Stewart J (1998) The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. J Neurosci 18(14):5529–5536PubMedCrossRefGoogle Scholar
  32. Feit MD, Taylor OD (2015) Contemporary substance use researchGoogle Scholar
  33. Fox HC, Seo D, Tuit K, Hansen J, Kimmerling A, Morgan PT, Sinha R (2012) Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings. J Psychopharmacol 26(7):958–972PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fox HC, Morgan PT, Sinha R (2014) Sex differences in guanfacine effects on drug craving and stress arousal in cocaine-dependent individuals. Neuropsychopharmacology 39(6):1527–1537PubMedPubMedCentralCrossRefGoogle Scholar
  35. George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O'Dell LE, Richardson HN, Koob GF (2007) CRF–CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci 104(43):17198–17203PubMedCrossRefGoogle Scholar
  36. Goeders NE (2002) The HPA axis and cocaine reinforcement. Psychoneuroendocrinology 27(1):13–33PubMedCrossRefGoogle Scholar
  37. Gungor NZ, Paré D (2016) Functional heterogeneity in the bed nucleus of the stria terminalisfunctional heterogeneity in the bed nucleus of the stria terminalis. J Neurosci 36(31):8038–8049PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78(3):167–177PubMedCrossRefGoogle Scholar
  39. Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hammack SE, Roman CW, Lezak KR, Kocho-Shellenberg M, Grimmig B, Falls WA, Braas K, May V (2010) Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. J Mol Neurosci 42(3):327–340PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hammack SE, Cooper MA, Lezak KR (2012) Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology 62(2):565–575PubMedCrossRefGoogle Scholar
  42. Hand TH, Koob GF, Stinus L, Le Moal M (1988) Aversive properties of opiate receptor blockade: evidence for exclusively central mediation in naive and morphine-dependent rats. Brain Res 474(2):364–368PubMedCrossRefGoogle Scholar
  43. Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A (2011) PACAP is implicated in the stress axes. Curr Pharm Des 17(10):985–989PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hashimoto H, Shintani N, Ago Y, Hayata-Takano A, Nakazawa T, Hashimoto R et al (2016) Implications of PACAP signaling in psychiatric disorders. In: Pituitary Adenylate Cyclase Activating Polypeptide—PACAP. Springer, Cham, pp 757–766CrossRefGoogle Scholar
  45. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM (2006) Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 5(4):453–479PubMedPubMedCentralCrossRefGoogle Scholar
  46. Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. In: The basal forebrain. Springer, Boston, pp 1–42Google Scholar
  47. Herman JP (2012) Neural pathways of stress integration: relevance to alcohol abuse. Alcohol Res 34(4):441–447PubMedPubMedCentralGoogle Scholar
  48. Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6(4):433–442PubMedCrossRefGoogle Scholar
  49. Herman JP, Prewitt CMF, Cullinan WE (1996) Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit Rev Neurobiol 10(3-4)Google Scholar
  50. Higgins ST, Silverman K, Sigmon SC, Naito NA (2012) Incentives and health: an introduction. Prev Med 55:S2–S6PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11(7):503–513PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y (2014) Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev 38:1–16PubMedCrossRefGoogle Scholar
  53. Ju G, Swanson LW (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. J Comp Neurol 280(4):587–602PubMedCrossRefGoogle Scholar
  54. King JS, Bishop GA (2002) The distribution and cellular localization of CRF-R1 in the vermis of the postnatal mouse cerebellum. Exp Neurol 178(2):175–185PubMedCrossRefGoogle Scholar
  55. Kocho-Schellenberg M, Lezak KR, Harris OM, Roelke E, Gick N, Choi I et al (2014) PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 39(7):1614–1623PubMedPubMedCentralCrossRefGoogle Scholar
  56. Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46(9):1167–1180PubMedCrossRefGoogle Scholar
  57. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59(1):11–34PubMedPubMedCentralCrossRefGoogle Scholar
  58. Koob GF (2010) The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 1314:3–14PubMedCrossRefGoogle Scholar
  59. Koob GF (2015) Medications for treatment of alcoholism that derive from the dark side of addiction. Can J Addict 6(1):27Google Scholar
  60. Koob GF (2016) The neurobiology of reward and stress and its relevance for understanding drug seeking and dependence symptomatology. The Oxford handbook of substance use and substance use disorders, 1, 166–191Google Scholar
  61. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58PubMedCrossRefGoogle Scholar
  62. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129PubMedCrossRefGoogle Scholar
  63. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8(11):1442–1444PubMedCrossRefGoogle Scholar
  64. Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53PubMedCrossRefGoogle Scholar
  65. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238PubMedCrossRefGoogle Scholar
  66. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773PubMedCrossRefGoogle Scholar
  67. Lee Y, Davis M (1997) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6434–6446PubMedCrossRefGoogle Scholar
  68. Lehmann ML, Mustafa T, Eiden AM, Herkenham M, Eiden LE (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38(5):702–715PubMedCrossRefGoogle Scholar
  69. Levran O, Peles E, Randesi M, Li Y, Rotrosen J, Ott J, Adelson M, Kreek MJ (2014) Stress-related genes and heroin addiction: a role for a functional FKBP5 haplotype. Psychoneuroendocrinology 45:67–76PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lezak KR, Roelke E, Harris OM, Choi I, Edwards S, Gick N et al (2014) Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 45:11–20PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lezak KR, Missig G, Carlezon WA Jr (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci 19(2):181–191PubMedPubMedCentralGoogle Scholar
  72. Logrip ML, Koob GF, Zorrilla EP (2011) Role of corticotropin-releasing factor in drug addiction. CNS Drugs 25(4):271–287PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445PubMedCrossRefGoogle Scholar
  74. Majzoub JA (2006) Corticotropin-releasing hormone physiology. Eur J Endocrinol 155(suppl 1):S71–S76CrossRefGoogle Scholar
  75. Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41(1):335–356PubMedCrossRefGoogle Scholar
  76. Marcinkiewcz CA, Mazzone CM, D’Agostino G, Halladay LR, Hardaway JA, DiBerto JF et al (2016) Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 537(7618):97–101PubMedPubMedCentralCrossRefGoogle Scholar
  77. May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC HOP1 receptor activation coordinates multiple neurotrophic signaling pathways. J Biol Chem 285(13):9749–9761PubMedPubMedCentralCrossRefGoogle Scholar
  78. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179PubMedCrossRefGoogle Scholar
  79. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2–3):174–185PubMedPubMedCentralCrossRefGoogle Scholar
  80. McEwen BS, Chattarji S (2007) Neuroendocrinology of stress. In: Handbook of neurochemistry and molecular neurobiology. Springer, US, pp 571–593CrossRefGoogle Scholar
  81. McKee SA, Potenza MN, Kober H, Sofuoglu M, Arnsten AF, Picciotto MR, Weinberger AH, Ashare R, Sinha R (2015) A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J Psychopharmacol 29(3):300–311PubMedCrossRefGoogle Scholar
  82. Meloni EG, Venkataraman A, Donahue RJ, Carlezon WA (2016) Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats. Psychoneuroendocrinology 64:12–21PubMedCrossRefGoogle Scholar
  83. Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G et al (2006) Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 59(7):594–602PubMedCrossRefGoogle Scholar
  84. Miles OW, Thrailkill EA, Linden AK, May V, Bouton ME, Hammack SE (2017) Pituitary adenylate cyclase-activating peptide in the bed nucleus of the Stria terminalis mediates stress-induced reinstatement of cocaine seeking in rats. Neuropsychopharmacology 43:978–986PubMedCrossRefGoogle Scholar
  85. Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014) Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86:38–48PubMedPubMedCentralCrossRefGoogle Scholar
  86. Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V (2017) Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol Psychiatry 81(8):671–682PubMedCrossRefGoogle Scholar
  87. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164(1):567–574PubMedCrossRefGoogle Scholar
  88. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, ..., Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170(2):643–648Google Scholar
  89. Molander A, Vengeliene V, Heilig M, Wurst W, Deussing JM, Spanagel R (2012) Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking. Neuropsychopharmacology 37(4):1047–1056PubMedCrossRefGoogle Scholar
  90. Möller C, Wiklund L, Sommer W, Thorsell A, Heilig M (1997) Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions. Brain Res 760(1–2):94–101PubMedCrossRefGoogle Scholar
  91. Moran-Santa Maria MM, Baker NL, Ramakrishnan V, Brady KT, McRae-Clark A (2015) Impact of acute guanfacine administration on stress and cue reactivity in cocaine-dependent individuals. Am J Drug Alcohol Abuse 41(2):146–152PubMedCrossRefGoogle Scholar
  92. Mustafa T, Jiang SZ, Eiden AM, Weihe E, Thistlethwaite I, Eiden LE (2015) Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice. Stress 18(4):408–418PubMedPubMedCentralCrossRefGoogle Scholar
  93. Navarro-Zaragoza J, Nunez C, Laorden ML, Milanés MV (2010) Effects of corticotropin-releasing factor receptor-1 antagonists on the brain stress system responses to morphine withdrawal. Mol Pharmacol 77(5):864–873PubMedCrossRefGoogle Scholar
  94. Nemeroff CB, Bissette G, Akil H, Fink M (1991) Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotrophin-releasing factor, β-endorphin and somatostatin. Br J Psychiatry 158(1):59–63PubMedCrossRefGoogle Scholar
  95. Norrholm SD, Das M, Légrádi G (2005) Behavioral effects of local microinfusion of pituitary adenylate cyclase activating polypeptide (PACAP) into the paraventricular nucleus of the hypothalamus (PVN). Regul Pept 128(1):33–41PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pastor R, Reed C, Burkhart-Kasch S, Li N, Sharpe AL, Coste SC, Stenzel-Poore MP, Phillips TJ (2011) Ethanol concentration-dependent effects and the role of stress on ethanol drinking in corticotropin-releasing factor type 1 and double type 1 and 2 receptor knockout mice. Psychopharmacology 218(1):169–177PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pego JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OFX, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516PubMedCrossRefGoogle Scholar
  98. Price ML, Kirby LG, Valentino RJ, Lucki I (2002) Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming. Psychopharmacology 162(4):406–414PubMedCrossRefGoogle Scholar
  99. Radulovic J, Sydow S, Spiess J (1998) Characterization of native corticotropin-releasing factor receptor type 1 (cRFR1) in the rat and mouse central nervous system. J Neurosci Res 54(4):507–521PubMedCrossRefGoogle Scholar
  100. Ramsay DS, Woods SC, Kaiyala KJ (2014) Drug-induced regulatory overcompensation has motivational consequences: implications for homeostatic and allostatic models of drug addiction. Temperature 1(3):248–256CrossRefGoogle Scholar
  101. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K et al (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470(7335):492–497PubMedPubMedCentralCrossRefGoogle Scholar
  102. Richter RM, Weiss F (1999) In vivo crf release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse 32(4):254–261PubMedCrossRefGoogle Scholar
  103. Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M et al (2010) Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry 67(9):831–839PubMedPubMedCentralCrossRefGoogle Scholar
  104. Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB, Hammack SE, May V (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sakanaka M, Magari S, Shibasaki T, Lederis K (1988) Corticotropin releasing factor-containing afferents to the lateral septum of the rat brain. J Comp Neurol 270(3):404–415PubMedCrossRefGoogle Scholar
  106. Sapolsky RM (2004) Why zebras don’t get ulcers: the acclaimed guide to stress, stress-related diseases, and coping-now revised and updated. Holt paperbacksGoogle Scholar
  107. Sarnyai Z, Bíró É, Gardi J, Vecsernyés M, Julesz J, Telegdy G (1995) Brain corticotropin-releasing factor mediates ‘anxiety-like’ behavior induced by cocaine withdrawal in rats. Brain Res 675(1–2):89–97PubMedCrossRefGoogle Scholar
  108. Schepers S (2017) Renewal in the context of stress: a potential mechanisms of stress-induced reinstatement. UVM Graduate College Dissertation and ThesesGoogle Scholar
  109. Schulkin J, Gold PW, McEwen BS (1998) Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23(3):219–243PubMedCrossRefGoogle Scholar
  110. Scott CK, Dennis ML, Laudet A, Funk RR, Simeone RS (2011) Surviving drug addiction: the effect of treatment and abstinence on mortality. Am J Public Health 101(4):737–744PubMedPubMedCentralCrossRefGoogle Scholar
  111. Seiglie MP, Smith KL, Blasio A, Cottone P, Sabino V (2015) Pituitary adenylate cyclase-activating polypeptide induces a depressive-like phenotype in rats. Psychopharmacology 232(20):3821–3831PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J (1997) Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 17(7):2605–2614PubMedCrossRefGoogle Scholar
  113. Shaham Y, Erb S, Leung S, Buczek Y, Stewart J (1998) CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 137(2):184–190PubMedCrossRefGoogle Scholar
  114. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33(1):13–33PubMedCrossRefGoogle Scholar
  115. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21(6):619–670PubMedGoogle Scholar
  116. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158(4):343–359PubMedCrossRefGoogle Scholar
  117. Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9(5):388–395PubMedCrossRefGoogle Scholar
  118. Sinha R, Catapano D, O’Malley S (1999) Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142(4):343–351PubMedCrossRefGoogle Scholar
  119. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ (2006) Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry 63(3):324–331PubMedCrossRefGoogle Scholar
  120. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J (2013) Key role of CRF in the skin stress response system. Endocr Rev 34(6):827–884PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS, Heilig MA (2008) Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 63(2):139–145PubMedCrossRefGoogle Scholar
  122. Spiess J, Rivier J, Rivier C, Vale W (1981) Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci 78(10):6517–6521PubMedCrossRefGoogle Scholar
  123. Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165(4):1025–1030PubMedCrossRefGoogle Scholar
  124. Stroth N, Holighaus Y, Ait-Ali D, Eiden LE (2011) PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 1220(1):49–59PubMedPubMedCentralCrossRefGoogle Scholar
  125. Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE (2013) PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology 154(1):330–339PubMedCrossRefGoogle Scholar
  126. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21(8):323–331PubMedCrossRefGoogle Scholar
  127. Tjong YW, Ip SP, Lao L, Wu J, Fong HH, Sung JJ, Berman B, Che CT (2010) Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat. Neuro Endocrinol Lett 31(2):215–220PubMedGoogle Scholar
  128. Tsukiyama N, Saida Y, Kakuda M, Shintani N, Hayata A, Morita Y et al (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14(4):368–375PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397PubMedCrossRefGoogle Scholar
  130. Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C et al (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428(2):191–212PubMedCrossRefGoogle Scholar
  131. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52(2):269–324PubMedGoogle Scholar
  132. Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26(12):2518–2524PubMedPubMedCentralCrossRefGoogle Scholar
  133. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357PubMedCrossRefGoogle Scholar
  134. Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 213(1–2):29–42PubMedCrossRefGoogle Scholar
  135. Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of κ-opioid systems in ethanol dependence. Neuropsychopharmacology 33(3):643–652PubMedCrossRefGoogle Scholar
  136. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216PubMedCrossRefGoogle Scholar
  137. Weiss F, Ciccocioppo R, Parsons LH, Katner S, Liu XIU, Zorrilla EP et al (2001) Compulsive drug-seeking behavior and relapse. Ann N Y Acad Sci 937(1):1–26PubMedCrossRefGoogle Scholar
  138. Wise RA, Morales M (2010) A ventral tegmental CRF-glutamate-dopamine interaction in addiction. Brain Res 1314:38–43PubMedCrossRefGoogle Scholar
  139. Zorrilla EP, Valdez GR, Weiss F (2001) Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology 158(4):374–381PubMedCrossRefGoogle Scholar
  140. Zorrilla EP, Logrip ML, Koob GF (2014) Corticotropin releasing factor: a key role in the neurobiology of addiction. Front Neuroendocrinol 35(2):234–244PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychological ScienceThe University of VermontBurlingtonUSA
  2. 2.Department of Neurological SciencesThe University of VermontBurlingtonUSA

Personalised recommendations