Advertisement

Journal of Molecular Neuroscience

, Volume 66, Issue 1, pp 37–43 | Cite as

Alzheimer’s Disease Risk Variant rs2373115 Regulates GAB2 and NARS2 Expression in Human Brain Tissues

  • Guiyou Liu
  • Tao Wang
  • Rui Tian
  • Yang Hu
  • Zhifa Han
  • Pingping Wang
  • Wenyang Zhou
  • Peng Ren
  • Jian Zong
  • Shuilin Jin
  • Qinghua Jiang
Article

Abstract

Genetic association studies have identified significant association between the GAB2 rs2373115 variant and Alzheimer’s disease (AD). However, it is unknown whether rs2373115 affects the regulation of nearby genes. Here, we evaluate the potential effect of rs2373115 on gene expression using multiple eQTL (expression quantitative trait loci) datasets from human brain tissues from the Mayo Clinic brain expression genome-wide association study (eGWAS), the UK Brain Expression Consortium (UKBEC), the Genotype-Tissue Expression (GTEx) project, and the Brain xQTL Serve. Our findings indicate that the rs2373115 C allele is associated with increased NARS2 expression, and both reduced and increased GAB2 expression in human tissues. Using a large-scale AD case-control expression dataset, we found increased GAB2 expression and reduced NARS2 expression in AD cases compared with controls. We believe that our findings provide important information regarding the rs2373115 variant and expression of nearby genes with respect to AD risk.

Keywords

Alzheimer’s disease GAB2 Genome-wide association study eQTLs 

Notes

Acknowledgements

We thank Jeremy Allen, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding Information

This work was supported by funding from the National Nature Science Foundation of China (Grant No. 61571152), the National High-tech R&D Program of China (863 Program) (Nos: 2014AA021505, 2015AA020101, 2015AA020108), and the National Science and Technology Major Project (Nos: 2013ZX03005012 and 2016YFC1202302).

Compliance with Ethical Standards

Competing Interest

The authors declare that they have no competing interests.

References

  1. Allen M et al (2015) Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol Genet 1:e15CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN, Nair AA, Middha S, Maharjan S, Nguyen T, Ma L, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N, Alzheimer’s Disease Genetics Consortium (ADGC), Apostolova LG, Arnold SE, Baldwin CT, Barber R, Barmada MM, Beach T, Beecham GW, Beekly D, Bennett DA, Bigio EH, Bird TD, Blacker D, Boeve BF, Bowen JD, Boxer A, Burke JR, Buros J, Buxbaum JD, Cairns NJ, Cantwell LB, Cao C, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Crane PK, Cruchaga C, Cummings JL, de Jager PL, DeCarli C, DeKosky S, Demirci FY, Diaz-Arrastia R, Dick M, Dombroski BA, Duara R, Ellis WD, Evans D, Faber KM, Fallon KB, Farlow MR, Ferris S, Foroud TM, Frosch M, Galasko DR, Gallins PJ, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Goate AM, Green RC, Growdon JH, Hakonarson H, Hamilton RL, Hardy J, Harrell LE, Head E, Honig LS, Huentelman MJ, Hulette CM, Hyman BT, Jarvik GP, Jicha GA, Jin LW, Jun G, Kamboh MI, Karlawish J, Karydas A, Kauwe JS, Kaye JA, Kennedy N, Kim R, Koo EH, Kowall NW, Kramer P, Kukull WA, Lah JJ, Larson EB, Levey AI, Lieberman AP, Lopez OL, Lunetta KL, Mack WJ, Marson DC, Martin ER, Martiniuk F, Mash DC, Masliah E, McCormick W, McCurry S, McDavid A, McKee A, Mesulam M, Miller BL, Miller CA, Miller JW, Montine TJ, Morris JC, Myers AJ, Naj AC, Nowotny P, Parisi JE, Perl DP, Peskind E, Poon WW, Potter H, Quinn JF, Raj A, Rajbhandary RA, Raskind M, Reiman EM, Reisberg B, Reitz C, Ringman JM, Roberson ED, Rogaeva E, Rosenberg RN, Sano M, Saykin AJ, Schneider JA, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, St George-Hyslop P, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Tsuang DW, van Deerlin V, Vardarajan BN, Vinters HV, Vonsattel JP, Wang LS, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79:221–228CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bao X et al. (2015) Cell adhesion molecule pathway genes are regulated by cis-regulatory SNPs and show significantly altered expression in Alzheimer’s disease brains Neurobiol Aging 36:2904 e2901-2907CrossRefGoogle Scholar
  4. Belbin O, Carrasquillo MM, Crump M, Culley OJ, Hunter TA, Ma L, Bisceglio G, Zou F, Allen M, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG (2011) Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease. Hum Genet 129:273–282CrossRefPubMedGoogle Scholar
  5. Chen H, Wu G, Jiang Y, Feng R, Liao M, Zhang L, Ma G, Chen Z, Zhao B, Li K, Yu C, Liu G (2015) Analyzing 54,936 samples supports the association between CD2AP rs9349407 polymorphism and Alzheimer’s disease susceptibility. Mol Neurobiol 52:1–7CrossRefPubMedGoogle Scholar
  6. Clough E, Barrett T (2016) The gene expression omnibus database methods. Mol Biol 1418:93–110Google Scholar
  7. GTEx Consortium (2013) the genotype-tissue expression (GTEx) project. Nat Genet 45:580–585CrossRefGoogle Scholar
  8. Hibar DP et al (2012) Alzheimer’s disease risk gene, GAB2, is associated with regional brain volume differences in 755 young healthy twins. Twin Res Hum Genet 15:286–295CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hu Y, Jin S, Cheng L, Liu G, Jiang Q (2017a) Autoimmune disease variants regulate GSDMB gene expression in human immune cells and whole blood. Proc Natl Acad Sci U S A 114:E7860–E7862CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hu Y, Zheng L, Cheng L, Zhang Y, Bai W, Zhou W, Wang T, Han Z, Zong J, Jin S, Zhang J, Liu G, Jiang Q (2017b) GAB2 rs2373115 variant contributes to Alzheimer’s disease risk specifically in European population. J Neurol Sci 375:18–22CrossRefPubMedGoogle Scholar
  11. GTEx Consortium (2015) Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans Science 348:648–660Google Scholar
  12. Ikram MA, Liu F, Oostra BA, Hofman A, van Duijn CM, Breteler MM (2009) The GAB2 gene and the risk of Alzheimer’s disease: replication and meta-analysis. Biol Psychiatry 65:995–999CrossRefPubMedGoogle Scholar
  13. Jiang Q et al (2017) Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol Neurobiol 54:594–600CrossRefPubMedGoogle Scholar
  14. Lambert JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458CrossRefPubMedPubMedCentralGoogle Scholar
  15. Liu G, Bao X, Wang R (2015) Expression quantitative trait loci regulate HNF4A and PTBP1 expression in human brains. Proc Natl Acad Sci U S A 112:E3975CrossRefPubMedPubMedCentralGoogle Scholar
  16. Liu G, Hu Y, Jin S, Jiang Q (2017a) Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proc Natl Acad Sci U S A 114:E906–E907CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu G, Hu Y, Jin S, Zhang F, Jiang Q, Hao J (2016) Cis-eQTLs regulate reduced LST1 gene and NCR3 gene expression and contribute to increased autoimmune disease risk. Proc Natl Acad Sci U S A 113:E6321–E6322CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu G, Xu Y, Jiang Y, Zhang L, Feng R, Jiang Q (2017b) PICALM rs3851179 variant confers susceptibility to Alzheimer’s disease in Chinese population. Mol Neurobiol 54:3131–3136CrossRefPubMedGoogle Scholar
  19. Liu G, Zhang F, Hu Y, Jiang Y, Gong Z, Liu S, Chen X, Jiang Q, Hao J (2017c) Genetic variants and multiple sclerosis risk gene SLC9A9 expression in distinct human brain regions. Mol Neurobiol 54:6820–6826CrossRefPubMedGoogle Scholar
  20. McGovern A et al (2016) Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Iol 17:212CrossRefGoogle Scholar
  21. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E, Xu J, Yu L, Gaiteri C, Bennett DA, Mostafavi S, de Jager PL (2017) An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci 20:1418–1426CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pan XL, Ren RJ, Wang G, Tang HD, Chen SD (2010) The Gab2 in signal transduction and its potential role in the pathogenesis of Alzheimer’s disease. Neurosci Bull 26:241–246CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ramasamy A et al (2014) Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 17:1418–1428CrossRefPubMedPubMedCentralGoogle Scholar
  25. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, Joshipura KD, Pearson JV, Hu-Lince D, Huentelman MJ, Craig DW, Coon KD, Liang WS, Herbert RLH, Beach T, Rohrer KC, Zhao AS, Leung D, Bryden L, Marlowe L, Kaleem M, Mastroeni D, Grover A, Heward CB, Ravid R, Rogers J, Hutton ML, Melquist S, Petersen RC, Alexander GE, Caselli RJ, Kukull W, Papassotiropoulos A, Stephan DA (2007) GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 54:713–720CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schjeide BM, Hooli B, Parkinson M, Hogan MF, DiVito J, Mullin K, Blacker D, Tanzi RE, Bertram L (2009) GAB2 as an Alzheimer disease susceptibility gene: follow-up of genomewide association results. Arch Neurol 66:250–254CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shen N et al (2015) An updated analysis with 85,939 samples confirms the association between CR1 rs6656401 polymorphism and Alzheimer’s disease. Mol Neurobiol 51:1017–1023CrossRefPubMedGoogle Scholar
  28. Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, DS MC 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445–458CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhang S et al (2015) CLU rs2279590 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian and Asian populations. J Neural Transm (Vienna) 122:433–439CrossRefGoogle Scholar
  30. Zou F et al (2013) Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer’s disease pathology. PLoS One 8:e64802CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zou F et al (2012) Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet 8:e1002707CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Department of MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations