Journal of Molecular Neuroscience

, Volume 65, Issue 3, pp 343–350 | Cite as

MeCP2 Differentially Regulate the Myelin MBP and PLP Protein Expression in Oligodendrocytes and C6 Glioma

  • Kedarlal Sharma
  • Juhi Singh
  • Prakash P. PillaiEmail author


MeCP2 (methyl-CpG binding protein 2), an epigenetic regulator, has been shown to regulate the function of neurons and glial cells. Our previous study has demonstrated that MeCP2 repress the myelin gene expression in rat oligodendrocytes but whether MeCP2 bind to myelin gene MBP and PLP is not yet known. Besides oligodendrocytes, C6 glioma also expresses myelin genes and could be used as a model system to study myelin gene expression. In the present study, we determined that MeCP2 directly bind to MBP, PLP, and BDNF promoter in oligodendrocytes. Further, it was found that MeCP2 differentially regulates the myelin gene expression in oligodendrocytes and C6 glioma. In contrast to oligodendrocytes, MeCP2 does not bind to promoter region of MBP and PLP in C6 glioma suggest that MeCP2 differentially regulates the gene expression in different cell types.


MeCP2 C6 glioma MBP PLP Oligodendrocytes 



We are grateful to Prof. M. Cristina Cardoso, Department of Biology, TU Darmstadt, for her kind favor in appreciating this study by providing MeCP2 plasmid. We are also thankful to Dr. R.V. Devkar laboratory, Department of Zoology, The M.S. University of Baroda, for allowing us to carry out Fluorescent staining observations and photography using the Floid cell imaging system.


This study was funded by the Department of Biotechnology (DBT), New Delhi, India (Sanction order No. BT/PR4974/MED/30/773/2012 dated 10/09/2013).

Compliance with Ethical Standard

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188CrossRefPubMedGoogle Scholar
  2. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927CrossRefPubMedGoogle Scholar
  3. Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7(6):415–426CrossRefPubMedGoogle Scholar
  4. Bottenstein, J. E., & Sato, G. H. (1979). Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proceedings of the National Academy of Sciences, 76(1):514–517Google Scholar
  5. Chen W, Chang Q, Lin Y, Meissner A, West AE, Griffith EC et al (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science(New York,NY) 302(5646):885–889CrossRefGoogle Scholar
  6. Cronk JC, Derecki NC, Ji E, Xu Y, Lampano AE, Smirnov I et al (2015) Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42(4):679–691CrossRefPubMedPubMedCentralGoogle Scholar
  7. Emery B, Lu QR (2015) Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb Perspect Biol 7(9):a020461CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fulton D, Paez PM, Campagnoni AT (2009) The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2(1):AN20090051CrossRefGoogle Scholar
  9. Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2 assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278(34):32181–32188CrossRefPubMedGoogle Scholar
  10. Ghiani CA, Ying Z, Vellis JD, Gomez-Pinilla F (2007) Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia 55(9):966–975CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hansen JC, Ghosh RP, Woodcock CL (2010) Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life 62(10):732–738CrossRefPubMedPubMedCentralGoogle Scholar
  12. He DY, Neasta J, Ron D (2010) Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 285(25):19043–19050CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jordan C, Li HH, Kwan HC, Francke U (2007) Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet 8(1):36CrossRefPubMedPubMedCentralGoogle Scholar
  14. Khorshid Ahmad T, Zhou T, AlTaweel K, Cortes C, Lillico R, Lakowski TM et al (2017) Experimental autoimmune encephalomyelitis (EAE)-induced elevated expression of the E1 isoform of methyl CpG binding protein 2 (MeCP2E1): implications in multiple sclerosis (MS)-induced neurological disability and associated myelin damage. Int J Mol Sci 18(6):1254CrossRefPubMedCentralGoogle Scholar
  15. Kishi N, Macklis J (2004) MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 27(3):306–321CrossRefPubMedGoogle Scholar
  16. Kitamura M, Itoh K, Matsumoto A, Hayashi Y, Sasaki R, Imai Y, Itoh H (2001) Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins. Kobe J Med Sci 47(2):59–76PubMedGoogle Scholar
  17. Leisewitz AV, Urrutia CR, Martinez GR, Loyola G, Bronfman M (2008) A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. J Cell Physiol 217(2):367–376CrossRefPubMedGoogle Scholar
  18. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4):402–408Google Scholar
  19. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al (2003) DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302(5646):890–893CrossRefPubMedGoogle Scholar
  20. Montague P, McCallion AS, Davies RW, Griffiths IR (2006) Myelin-associated oligodendrocytic basic protein: a family of abundant CNS myelin proteins in search of a function. Dev Neurosci 28(6):479–487CrossRefPubMedGoogle Scholar
  21. Nan X, Ng H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389CrossRefPubMedGoogle Scholar
  22. Nguyen MVC, Felice C a, Du F, Covey MV, Robinson JK, Mandel G, Ballas N (2013) Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci: Off J Soc Neurosci 33(48):18764–18774CrossRefGoogle Scholar
  23. Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA et al (2017) RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 8(1):56CrossRefPubMedPubMedCentralGoogle Scholar
  24. Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78(3):347–361CrossRefPubMedGoogle Scholar
  25. Parikh ZS, Tripathi A, Pillai PP (2017) Differential regulation of MeCP2 phosphorylation by laminin in oligodendrocytes. J Mol Neurosci 62(3–4):309–317CrossRefPubMedGoogle Scholar
  26. Quarles RH, Macklin WB, Morell P (2006) Myelin formation, structure and biochemistry. Basic neurochemistry: molecular, cellular and medical aspects 7:51–71Google Scholar
  27. Salvati S, Natali F, Attorri L, Raggi C, Di Biase A, Sanchez M (2004) Stimulation of myelin proteolipid protein gene expression by eicosapentaenoic acid in C6 glioma cells. Neurochem Int 44(5):331–338CrossRefPubMedGoogle Scholar
  28. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome : MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11(2):115–124CrossRefPubMedGoogle Scholar
  29. Sharma K, Singh J, Pillai PP, Frost EE (2015) Involvement of MeCP2 in regulation of myelin-related gene expression in cultured rat oligodendrocytes. J Mol Neurosci 57(2):176–184CrossRefPubMedGoogle Scholar
  30. Sharma K, Singh J, Frost EE, Pillai PP (2018a) MeCP2 overexpression inhibits proliferation, migration and invasion of C6 glioma by modulating ERK signaling and gene expression. Neurosci Lett 674:42–48CrossRefPubMedGoogle Scholar
  31. Sharma K, Singh J, Frost EE, Pillai PP (2018b) MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp 78(1):26–36. (Accepted manuscript)CrossRefGoogle Scholar
  32. Singh J, Sharma K, Pillai PP (2018) PDGFR inhibition mediated intracellular signalling in C6 glioma growth and migration: role of ERK and ROCK pathway. Cytotechnology 70(1):465–477CrossRefPubMedGoogle Scholar
  33. Swiss VA, Nguyen T, Dugas J, Ibrahim A, Barres B, Androulakis IP, Casaccia P (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS One 6(4):e18088CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tripathi A, Parikh ZS, Vora P, Frost EE, Pillai PP (2017) pERK1/2 peripheral recruitment and filopodia protrusion augment oligodendrocyte progenitor cell migration: combined effects of PDGF-A and fibronectin. Cell Mol Neurobiol 37(2):183–194CrossRefPubMedGoogle Scholar
  35. Ueno T, Ito J, Hoshikawa S, Ohori Y, Fujiwara S, Yamamoto S, Ohtsuka T, Kageyama R, Akai M, Nakamura K, Ogata T (2012) The identification of transcriptional targets of Ascl1 in oligodendrocyte development. Glia 60(10):1495–1505CrossRefPubMedGoogle Scholar
  36. Urdinguio R, Lopez-Serra L, Lopez-nieva P, Alaminos M, Diaz-Uriarte R, Fernandez A, Esteller M (2008) Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3(11):e3669CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vora P, Mina R, Namaka M, Frost E (2010) A novel transcriptional regulator of myelin gene expression: implications for neurodevelopmental disorders. Neuroreport 21(14):917–921CrossRefPubMedGoogle Scholar
  38. Yakabe S, Soejima H, Yatsuki H, Tominaga H, Zhao W, Higashimoto K, Joh K, Kudo S, Miyazaki K, Mukai T (2008) MeCP2 knockdown reveals DNA methylation-independent gene repression of target genes in living cells and a bias in the cellular location of target gene products. Genes Genet Syst 83(2):199–208CrossRefPubMedGoogle Scholar
  39. Yamamuro K, Kimoto S, Rosen KM, Kishimoto T, Makinodan M (2015) Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Front Cell Neurosci 9:154CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ye P, Kanoh M, Zhu W, Laszkiewicz I, Royland JE, Wiggins RC, Konat G (1992) Cyclic AMP-induced upregulation of proteolipid protein and myelin associated glycoprotein gene expression in C6 cells. J Neurosci Res 31(3):578–583CrossRefPubMedGoogle Scholar
  41. Zhou Z, Hong EJ, Cohen S, Zhao W, Ho H-YH, Schmidt L et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52(2):255–269CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhu W, Wiggins RC, Konat GW (1994) Glucocorticoid-induced upregulation of proteolipid protein and myelin-associated glycoprotein genes in C6 cells. J Neurosci Res 37(2):208–212CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of NeurobiologyThe M. S. University of BarodaVadodaraIndia
  2. 2.Department of ZoologyThe M. S. University of BarodaVadodaraIndia
  3. 3.Faculty of ScienceThe M. S. University of BarodaVadodaraIndia

Personalised recommendations