Advertisement

Journal of Molecular Neuroscience

, Volume 65, Issue 2, pp 213–221 | Cite as

Evidence for Association Between OXTR Gene and ASD Clinical Phenotypes

  • Lucas de Oliveira Pereira Ribeiro
  • Pedro Vargas-Pinilla
  • Djenifer B. Kappel
  • Danae Longo
  • Josiane Ranzan
  • Michele Michelin Becker
  • Rudimar dos Santos Riesgo
  • Lavinia Schuler-Faccini
  • Tatiana Roman
  • Jaqueline Bohrer Schuch
Article

Abstract

Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterized by impairments in social behaviors and communication. Oxytocin and its signaling pathway are related to a range of human behaviors, from facial expression recognition to aggressive behaviors, and have been suggested as involved in the etiology of ASD. Our aim was to evaluate the influence of two polymorphisms (rs1042778, rs53576) at the oxytocin receptor gene (OXTR) on ASD diagnosis and on specific ASD-related clinical symptoms (seizures, panic, and aggressive behaviors). We also assessed if these SNPs could be related to changes in OXTR availability and functionality using a bioinformatic approach. The sample was composed by 209 probands with ASD and their biological parents. Family-based approach and logistic regression models were used to investigated the outcomes. We observed that panic and aggressive behaviors were nominally associated with presence of rs1042778 T allele (P = 0.019/Pcorr = 0.114; P = 0.046/Pcorr = 0.276 respectively). Also, in the family-based analysis, a trend towards association with ASD susceptibility was observed for rs1042778 (G allele) (P = 0.066). In a bioinformatic approach, we demonstrated that rs1042778 G allele is determinant for the binding of the transcription factor MAZ, suggesting that when the T allele is present, the absence of MAZ binding might be associated with lower transcription levels of the OXTR gene. The overall findings suggest that the OXTR gene may play a role in ASD diagnosis and some of its clinical phenotypes, supported by previous animal and clinical studies. Further investigations are necessary to replicate our findings and fully understand the effects of the oxytocin pathway on ASD.

Keywords

Autism Oxytocin receptor gene Panic Aggressive Oxytocin Endophenotype 

Notes

Acknowledgments

We are grateful to all clinical staff at the Child Neurology Unit and technicians at the Laboratory of Biological Samples Collection from Hospital de Clínicas de Porto Alegre for their assistance with clinical data and blood sample collections, respectively. We also thank Dr. Sandra Leistner-Segal at the Medical Genetics Service from Hospital de Clínicas de Porto Alegre for the fragile X syndrome genotyping. We lastly would like to thank all the families who kindly participated in this research.

Funding Information

The study was funded by the following the institutions: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundo de Incentivo a Pesquisa e Eventos – Hospital de Clínicas de Porto Alegre (FIPE-HCPA), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Compliance with Ethical Standards

This study was approved by the Ethics Committee of HCPA (protocol numbers 05-451, 06-237, and 06632012.4.0000.5334) and it was in accordance with the ethical standards established in the 1964 Declaration of Helsinki and its later amendments. Informed consent was obtained from all individual participants or legal representatives included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12031_2018_1088_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, Fourth edition, American Psychiatric Association, Washington, DCGoogle Scholar
  2. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394.  https://doi.org/10.1073/pnas.0910249107 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Sykes N, Pagnamenta AT, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Carson AR, Casallo G, Casey J, Chu SH, Cochrane L, Corsello C, Crawford EL, Crossett A, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, le Couteur A, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Melhem NM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Piven J, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Wing K, Wittemeyer K, Wood S, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Betancur C, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Gallagher L, Geschwind DH, Gill M, Haines JL, Miller J, Monaco AP, Nurnberger JI, Paterson AD, Pericak-Vance MA, Schellenberg GD, Scherer SW, Sutcliffe JS, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Devlin B, Ennis S, Hallmayer J (2010) A genome-wide scan for common alleles affection risk for autism. Hum Mol Genet 19(20):4072–4082.  https://doi.org/10.1093/hmg/ddq307 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ashfield R, Patel AJ, Bossone SA, Brown H, Campbell RD, Marcu KB, Proudfoot NJ (1994) MAZ-dependent termination between closely spaced human complement genes. EMBO J 13(23):5656–5667PubMedPubMedCentralGoogle Scholar
  5. Bakermans-Kranenburg MJ, van Ijzendoorn MH (2014) A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatr Genet 24(2):45–51.  https://doi.org/10.1097/YPG.0b013e3283643684 CrossRefPubMedGoogle Scholar
  6. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265.  https://doi.org/10.1093/bioinformatics/bth457 CrossRefPubMedGoogle Scholar
  7. Bartz JA, Hollander E (2008) Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res 170:451–462.  https://doi.org/10.1016/S0079-6123(08)00435-4 CrossRefPubMedGoogle Scholar
  8. Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25(29):6807–6815.  https://doi.org/10.1523/JNEUROSCI.1342-05.2005 CrossRefPubMedGoogle Scholar
  9. Calcagnoli F, Stubbendorff C, Meyer N, de Boer SF, Althaus M, Koolhaas JM (2015) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology 90:74–81.  https://doi.org/10.1016/j.neuropharm.2014.11.012 CrossRefPubMedGoogle Scholar
  10. Caldwell HK, Aulino EA, Freeman AR, Miller TV, Witchey SK (2017) Oxytocin and behavior: lessons from knockout mice. Dev Neurobiol 77(2):190–201.  https://doi.org/10.1002/dneu.22431 CrossRefPubMedGoogle Scholar
  11. Campbell DB, Datta D, Jones ST, Batey Lee E, Sutcliffe JS, Hammock EA, Levitt P (2011) Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J Neurodev Disord 3(2):101–112.  https://doi.org/10.1007/s11689-010-9071-2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chow LH, Chen YH, Wu WC, Chang EP, Huang EY (2016) Sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats with intraplantar carrageenan-induced inflammation. PLoS One 11(9):e0162218.  https://doi.org/10.1371/journal.pone.0162218 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62(2):168–178.  https://doi.org/10.1016/j.biopsych.2006.08.024 CrossRefPubMedGoogle Scholar
  14. Creswell KG, Wright AG, Troxel WM, Ferrell RE, Flory JD, Manuck SB (2015) OXTR polymorphism predicts social relationships through its effects on social temperament. Soc Cogn Affect Neurosci 10(6):869–876.  https://doi.org/10.1093/scan/nsu132 CrossRefPubMedGoogle Scholar
  15. Dadds MR, Moul C, Cauchi A, Dobson-Stone C, Hawes DJ, Brennan J, Urwin R, Ebstein RE (2014) Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy. Dev Psychopathol 26(1):21–31.  https://doi.org/10.1017/S0954579413000485 CrossRefPubMedGoogle Scholar
  16. Dhakar MB, Rich ME, Reno EL, Lee HJ, Caldwell HK (2012) Heightened aggressive behavior in mice with lifelong versus postweaning knockout of the oxytocin receptor. Horm Behav 62(1):86–92.  https://doi.org/10.1016/j.yhbeh.2012.05.007 CrossRefPubMedGoogle Scholar
  17. Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B (2014) Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger syndrome. Mol Autism 5(1):48.  https://doi.org/10.1186/2040-2392-5-48 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feldman R, Zagoory-Sharon O, Weisman O, Schneiderman I, Gordon I, Maoz R, Shalev I, Ebstein RP (2012) Sensitive parenting is associated with plasma oxytocin and polymorphisms in the OXTR and CD38 genes. Biol Psychiatry 72(3):175–181.  https://doi.org/10.1016/j.biopsych.2011.12.025 CrossRefPubMedGoogle Scholar
  19. Feldman R, Monakhov M, Pratt M, Ebstein RP (2015) Oxytocin pathway genes: evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biol Psychiatry 79(3):174–184.  https://doi.org/10.1016/j.biopsych.2015.08.008 CrossRefPubMedGoogle Scholar
  20. Feng C, Hackett PD, DeMarco AC, Chen X, Stair S, Haroon E, Ditzen B, Pagnoni G, Rilling JK (2015) Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging Behav 9(4):754–764.  https://doi.org/10.1007/s11682-014-9333-9 CrossRefPubMedGoogle Scholar
  21. Ferris CF, Foote KB, Meltser HM, Plenby MG, Smith KL, Insel TR (1992) Oxytocin in the amygdala facilitates maternal aggression. Ann N Y Acad Sci 652:456–457CrossRefPubMedGoogle Scholar
  22. Francis SM, Kim SJ, Kistner-Griffin E, Guter S, Cook EH, Jacob S (2016) ASD and genetic associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR. Front Neurosci 10:516PubMedPubMedCentralGoogle Scholar
  23. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683.  https://doi.org/10.1113/eph8602185. CrossRefPubMedGoogle Scholar
  24. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PMA, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SFA, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573.  https://doi.org/10.1038/nature07953 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gromak N, West S, Proudfoot NJ (2006) Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 26(10):3986–3996CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694.  https://doi.org/10.1016/j.biopsych.2009.09.020 CrossRefPubMedGoogle Scholar
  27. Haram M, Tesli M, Bettella F, Djurovic S, Andreassen OA, Melle I (2015) Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders. Front Hum Neurosci 9:9.  https://doi.org/10.3389/fnhum.2015.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Israel S, Lerer E, Shalev I, Uzefovsky F, Riebold M, Laiba E, Bachner-Melman R, Maril A, Bornstein G, Knafo A, Ebstein RP (2009) The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task. PLoS One 4(5):e5535.  https://doi.org/10.1371/journal.pone.0005535 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johansson A, Bergman H, Corander J, Waldman ID, Karrani N, Salo B, Jern P, Algars M, Sandnabba K, Santtila P, Westberg L (2012) Alcohol and aggressive behavior in men -moderating effects of oxytocin receptor gene (OXTR) polymorphisms. Genes Brain Behav 11(2):214–221.  https://doi.org/10.1111/j.1601-183X.2011.00744.x CrossRefPubMedGoogle Scholar
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  31. King LB, Walum H, Inoue K, Eyrich NW, Young LJ (2016) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 80(2):160–169.  https://doi.org/10.1016/j.biopsych.2015.12.008 CrossRefPubMedGoogle Scholar
  32. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25(49):11489–11493.  https://doi.org/10.1523/JNEUROSCI.3984-05.2005 CrossRefPubMedGoogle Scholar
  33. Komatsu M, Li HO, Tsutsui H, Itakura K, Matsumura M, Yokoyama KK (1997) MAZ, a Myc-associated zinc finger protein, is essential for the ME1a1-mediated expression of the c-myc gene during neuroectodermal differentiation of P19 cells. Oncogene 15(10):1123–1131CrossRefPubMedGoogle Scholar
  34. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG (2016) Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci 19(11):1454–1462.  https://doi.org/10.1038/nn.4353 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lahiri DK, Nurnberger JI Jr (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19(19):5444CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee HJ, Macbeth AH, Pagani JH, Young WS 3rd (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88(2):127–151.  https://doi.org/10.1016/j.pneurobio.2009.04.001 PubMedPubMedCentralGoogle Scholar
  37. Lerer E, Levi S, Salomon S, Darvasi A, Yirmiya N, Ebstein RP (2008) Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry 13(10):980–988.  https://doi.org/10.1038/sj.mp.4002087 CrossRefPubMedGoogle Scholar
  38. Longo D, Schüler-Faccini L, Brandalize AP, dos Santos Riesgo R, Bau CH (2009) Influence of the 5-HTTLPR polymorphism and environmental risk factors in a Brazilian sample of patients with autism spectrum disorders. Brain Res 1267:9–17.  https://doi.org/10.1016/j.brainres.2009.02.072 CrossRefPubMedGoogle Scholar
  39. LoParo D, Waldman ID (2014) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20(5):640–646.  https://doi.org/10.1038/mp.2014.77 CrossRefPubMedGoogle Scholar
  40. Love TM, Enoch MA, Hodgkinson CA, Peciña M, Mickey B, Koeppe RA, Stohler CS, Goldman D, Zubieta JK (2012) Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol Psychiatry 72(3):198–206.  https://doi.org/10.1016/j.biopsych.2012.01.033 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lucht MJ, Barnow S, Sonnenfeld C, Rosenberger A, Grabe HJ, Schroeder W, Völzke H, Freyberger HJ, Herrmann FH, Kroemer H, Rosskopf D (2009) Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog Neuro-Psychopharmacol Biol Psychiatry 33(5):860–866.  https://doi.org/10.1016/j.pnpbp.2009.04.004 CrossRefGoogle Scholar
  42. Madden AM, Zup SL (2014) Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent. Physiol Behav 128:260–269.  https://doi.org/10.1016/j.physbeh.2014.01.036 CrossRefPubMedGoogle Scholar
  43. Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH (2012) The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav 11(5):545–551.  https://doi.org/10.1111/j.1601-183X.2012.00776.x CrossRefPubMedGoogle Scholar
  44. Marazziti D, Dell’Osso B, Baroni S, Mungai F, Catena M, Rucci P et al (2006) A relationship between oxytocin and anxiety of romantic attachment. Clin Pract Epidemiol Ment Health 2:28.  https://doi.org/10.1186/1745-0179-2-28
  45. Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334CrossRefPubMedGoogle Scholar
  46. Mooney SJ, Coen CW, Holmes MM, Beery AK (2015) Region-specific associations between sex, social status, and oxytocin receptor density in the brains of eusocial rodents. Neuroscience 303:261–269.  https://doi.org/10.1016/j.neuroscience.2015.06.043 CrossRefPubMedGoogle Scholar
  47. Nakajima M, Watanabe T, Aoki R, Shimizu R, Okuyama S, Furukawa Y (2016) Phenotypes associated with psychiatric disorders are sex-specific in a mutant mouse line. Brain Res 1652:53–61.  https://doi.org/10.1016/j.brainres.2016.09.037 CrossRefPubMedGoogle Scholar
  48. Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grünblatt E (2014) Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J Mol Psychiatry 2(1):1.  https://doi.org/10.1186/2049-9256-2-1 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Onodera M, Ishitobi Y, Tanaka Y, Aizawa S, Masuda K, Inoue A, Oshita H, Okamoto K, Kawashima C, Nakanishi M, Hirakawa H, Ninomiya T, Maruyama Y, Kanehisa M, Higuma H, Akiyoshi J (2015) Genetic association of the oxytocin receptor genes with panic, major depressive disorder, and social anxiety disorder. Psychiatr Genet 25(5):212.  https://doi.org/10.1097/YPG.0000000000000096 CrossRefPubMedGoogle Scholar
  50. Park J, Willmott M, Vetuz G, Toye C, Kirley A, Hawi Z, Brookes KJ, Gill M, Kent L (2010) Evidence that genetic variation in the oxytocin receptor (OXTR) gene influences social cognition in ADHD. Prog Neuro-Psychopharmacol Biol Psychiatry 34(4):697–702.  https://doi.org/10.1016/j.pnpbp.2010.03.029 CrossRefGoogle Scholar
  51. Parker KJ, Garner JP, Libove RA, Hyde SA, Hornbeak KB, Carson DS, Liao CP, Phillips JM, Hallmayer JF, Hardan AY (2014) Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci U S A 111(33):12258–12263.  https://doi.org/10.1073/pnas.1402236111 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Parks CL, Shenk T (1996) The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J Biol Chem 271(8):4417–4430.  https://doi.org/10.1074/jbc.271.8.4417 CrossRefPubMedGoogle Scholar
  53. Pereira A, Riesgo RS, Wagner MB (2008) Childhood autism: translation and validation of the Childhood Autism Rating Scale for use in Brazil. J Pediatr 84(6):487–494.  https://doi.org/10.2223/JPED.1828. CrossRefGoogle Scholar
  54. Persico A.M., Sacco R. (2014) Endophenotypes in Autism Spectrum Disorders. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York.  https://doi.org/10.1007/978-1-4614-4788-7_1
  55. Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Young WS III, Lee HJ, Blanchard DC, Blanchard RJ (2011) Oxytocin receptor knockout mice display deficits in the expression of autism-related behavior. Horm Behav 61(3):436–444.  https://doi.org/10.1016/j.yhbeh.2011.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ragnauth AK, Devidze N, Moy V, Finley K, Goodwillie A, Kow LM, Muglia LJ, Pfaff DW (2005) Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav 4(4):229–239.  https://doi.org/10.1111/j.1601-183X.2005.00118.x CrossRefPubMedGoogle Scholar
  57. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  58. Rich ME, de Cárdenas EJ, Lee HJ, Caldwell HK (2014) Impairments in the initiation of maternal behavior in oxytocin receptor knockout mice. PLoS One 9(6):e98839.  https://doi.org/10.1371/journal.pone.0098839 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rijlaarsdam J, van IJzendoorn MH, Verhulst FC, Jaddoe VW, Felix JF, Tiemeier H, Bakermans-Kranenburg MJ (2016) Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation and child autistic traits: the moderating role of OXTR rs53576 genotype. Autism Res 10(3):430–438.  https://doi.org/10.1002/aur.1681 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D (2009) Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci U S A 106(50):21437–21441.  https://doi.org/10.1073/pnas.0909579106 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 156B(3):255–274.  https://doi.org/10.1002/ajmg.b.31159 CrossRefPubMedGoogle Scholar
  62. Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E, Rubino T, Parolaro D, Nishimori K, Chini B (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr(+/−)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25:107–118.  https://doi.org/10.1111/j.1365-2826.2012.02385.x CrossRefPubMedGoogle Scholar
  63. Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69(9):875–882.  https://doi.org/10.1016/j.biopsych.2010.12.022 CrossRefPubMedGoogle Scholar
  64. Sato FP, Paula CS, Lowenthal R, Nakano EY, Brunoni D, Schwartzman JS, Mercadante MT (2009) Instrument to screen cases of pervasive developmental disorder: a preliminary indication of validity. Rev Bras Psiquiatr 31(1):30–33.  https://doi.org/10.1590/S1516-44462009000100008 CrossRefPubMedGoogle Scholar
  65. Scheele D, Striepens N, Kendrick KM, Schwering C, Noelle J, Wille A, Schläpfer TE, Maier W, Hurlemann R (2014) Opposing effects of oxytocin on moral judgment in males and females. Hum Brain Mapp 35(12):6067–6076.  https://doi.org/10.1002/hbm.22605 CrossRefPubMedGoogle Scholar
  66. Schneider-Hassloff H, Straube B, Jansen A, Nuscheler B, Wemken G, Witt SH, Rietschel M, Kircher T (2016) Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. NeuroImage 134:671–684.  https://doi.org/10.1016/j.neuroimage.2016.04.009 CrossRefPubMedGoogle Scholar
  67. Schuch JB, Muller D, Endres RG, Bosa CA, Longo D, Schuler-Faccini L, Ranzan J, Becker MM, dos Santos Riesgo R, Roman T (2014) The role of β3 integrin gene variants in autism spectrum disorders—diagnosis and symptomatology. Gene 553(1):24–30.  https://doi.org/10.1016/j.gene.2014.09.058 CrossRefPubMedGoogle Scholar
  68. Slane MM, Lusk LG, Boomer KB, Hare AE, King MK, Evans DW (2014) Social cognition, face processing, and oxytocin receptor single nucleotide polymorphisms in typically developing children. Dev Cogn Neurosci 9:160–171.  https://doi.org/10.1016/j.dcn.2014.04.001. CrossRefPubMedGoogle Scholar
  69. Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102(44):16096–16101.  https://doi.org/10.1073/pnas.0505312102 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Uvnäs Moberg K, Prime DK (2013) Oxytocin effects in mothers and infants during breastfeeding. Infantry 9(6):201–206Google Scholar
  71. Waller R, Corral-Frías NS, Vannucci B, Bogdan R, Knodt AR, Hariri AR, Hyde LW (2016) An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men. Soc Cogn Affect Neurosci 11(8):1218–1226.  https://doi.org/10.1093/scan/nsw042 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang J, Braskie MN, Hafzalla GW, Faskowitz J, McMahon KL, de Zubicaray GI, MJ W, Yu C, Thompson PM (2017) Relationship of a common OXTR gene variant to brain structure and default mode network function in healthy humans. NeuroImage 147:500–506.  https://doi.org/10.1016/j.neuroimage.2016.12.062 CrossRefPubMedGoogle Scholar
  73. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PMA, Kim CE, Hou C, Frackelton E, Chiavacci R, Takahashi N, Sakurai T, Rappaport E, Lajonchere CM, Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI, Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, Owley T, Sweeney JA, Brune CW, Cantor RM, Bernier R, Gilbert JR, Cuccaro ML, McMahon WM, Miller J, State MW, Wassink TH, Coon H, Levy SE, Schultz RT, Nurnberger JI, Haines JL, Sutcliffe JS, Cook EH, Minshew NJ, Buxbaum JD, Dawson G, Grant SFA, Geschwind DH, Pericak-Vance MA, Schellenberg GD, Hakonarson H (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246):528–533.  https://doi.org/10.1038/nature07999 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Warrier V, Chee V, Smith P, Chakrabarti B, Baron-Cohen S (2015) A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Mol Autism 6:49.  https://doi.org/10.1186/s13229-015-0041-0 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Winslow JT, Insel TR (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36(2–3):221–229.  https://doi.org/10.1054/npep.2002.0909 CrossRefPubMedGoogle Scholar
  76. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, Gong X, Zhang Y, Yang X, Zhang D (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 58(1):74–77.  https://doi.org/10.1016/j.biopsych.2005.03.013 CrossRefPubMedGoogle Scholar
  77. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, Leckman JF, Grigorenko EL (2008) Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry 63(10):911–916.  https://doi.org/10.1016/j.biopsych.2007.11.015 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang H, Gelernter J, Gruen JR, Kranzler HR, Aryeh IH, Simen A (2010) Functional impact of a single nucleotide polymorphism in the OPRD1 promoter region Huiping. J Hum Genet 55(5):278–284.  https://doi.org/10.1038/jhg.2010.22. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang R, Zhang HF, Han JS, Han SP (2017a) Genes related to oxytocin and arginine-vasopressin pathways: associations with autism spectrum disorders. Neurosci Bull 33(2):238–246.  https://doi.org/10.1007/s12264-017-0120-7 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang R, Xu XJ, Zhang HF, Han SP, Han JS (2017b) The role of the oxytocin/arginine vasopressin system in animal models of autism spectrum disorder. Adv Anat Embryol Cell Biol 224:135–158.  https://doi.org/10.1007/978-3-319-52498-6_8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lucas de Oliveira Pereira Ribeiro
    • 1
  • Pedro Vargas-Pinilla
    • 2
  • Djenifer B. Kappel
    • 2
  • Danae Longo
    • 2
  • Josiane Ranzan
    • 3
  • Michele Michelin Becker
    • 3
  • Rudimar dos Santos Riesgo
    • 3
  • Lavinia Schuler-Faccini
    • 2
  • Tatiana Roman
    • 2
  • Jaqueline Bohrer Schuch
    • 2
    • 4
  1. 1.Department of Basic Health SciencesUniversidade de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  2. 2.Department of Genetics, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Child Neurology Unit, Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratory of Immunosenescence, Graduate Program in Biomedical GerontologyPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations