Advertisement

Journal of Molecular Neuroscience

, Volume 65, Issue 1, pp 60–73 | Cite as

Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation

  • Nicole Jungwirth
  • Laura Salinas Tejedor
  • Wen Jin
  • Viktoria Gudi
  • Thomas Skripuletz
  • Veronika Maria Stein
  • Andrea Tipold
  • Andrea Hoffmann
  • Martin Stangel
  • Wolfgang BaumgärtnerEmail author
  • Florian Hansmann
Article

Abstract

Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a “hit and run” mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.

Keywords

Mesenchymal stem cells Canine mesenchymal stem cells Human mesenchymal stem cells Cell clusters CD44 Host versus graft reaction 

Notes

Acknowledgments

The authors thank Caroline Schütz, Petra Grünig, Kerstin Schöne, Kerstin Rohn, Regina Carlson, Danuta Waschke, and Bettina Buck for excellent technical assistance. The authors also thank PD Dr. Manuela Gernert, Department of Pharmacology, University of Veterinary Medicine, Hannover, Germany, and Alexander Klein, Department of Neuroanatomy, Medical School Hannover, Germany, for scientific advice. Parts of the data were published in the thesis of Nicole Jungwirth (Deutsche Veterinärmedizinische Gesellschaft, 2016).

Funding Information

W. Baumgärtner, M. Stangel, and A. Tipold were supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, Forschergruppe 1103, BA 815/14-1, STA 518/4-1, TI 309/4-2). This study was in part supported by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony, Germany.

Compliance with Ethical Standards

Human bone marrow-derived mesenchymal stem cells (hMSCs) were isolated from a healthy, female donor after consent of the ethics committee of Hannover Medical School. Animal experiments were conducted in accordance with the German Animal Welfare Law and all experiments were approved by the local authorities (Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Oldenburg, Germany, permission numbers: 33.12-42502-04-13/1071 and 33.9-42502-05-13A302; Landesamt für Natur, Umwelt und Verbraucherschutz (LANUV), Recklinghausen, Germany, permission number: 501/A80).

References

  1. Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584CrossRefPubMedGoogle Scholar
  3. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402CrossRefPubMedGoogle Scholar
  4. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369CrossRefPubMedGoogle Scholar
  5. de Bakker E, Van Ryssen B, De Schauwer C, Meyer E (2013) Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q 33:225–233CrossRefPubMedGoogle Scholar
  6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMedGoogle Scholar
  7. Edamura K, Kuriyama K, Kato K, Nakano R, Teshima K, Asano K, Sato T, Tanaka S (2012) Proliferation capacity, neuronal differentiation potency and microstructures after the differentiation of canine bone marrow stromal cells into neurons. J Vet Med Sci 74:923–927CrossRefPubMedGoogle Scholar
  8. Fortier LA, Travis AJ (2011) Stem cells in veterinary medicine. Stem Cell Res Ther 2:9CrossRefPubMedPubMedCentralGoogle Scholar
  9. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedGoogle Scholar
  10. Gordon D, Pavlovska G, Uney JB, Wraith DC, Scolding NJ (2010) Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69:1087–1095CrossRefPubMedGoogle Scholar
  11. Grigoriadis N, Lourbopoulos A, Lagoudaki R, Frischer JM, Polyzoidou E, Touloumi O, Simeonidou C, Deretzi G, Kountouras J, Spandou E, Kotta K, Karkavelas G, Tascos N, Lassmann H (2011) Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol 230:78–89CrossRefPubMedGoogle Scholar
  12. Guercio A, Di Bella S, Casella S, Di Marco P, Russo C, Piccione G (2013) Canine mesenchymal stem cells (MSCs): characterization in relation to donor age and adipose tissue-harvesting site. Cell Biol Int 37:789–798CrossRefPubMedGoogle Scholar
  13. Haeger JD, Hambruch N, Dilly M, Froehlich R, Pfarrer C (2011) Formation of bovine placental trophoblast spheroids. Cells Tissues Organs 193:274–284CrossRefPubMedGoogle Scholar
  14. Han SM, Lee HW, Bhang DH, Seo KW, Youn HY (2012) Canine mesenchymal stem cells are effectively labeled with silica nanoparticles and unambiguously visualized in highly autofluorescent tissues. BMC Vet Res 8:145CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hansmann F, Herder V, Kalkuhl A, Haist V, Zhang N, Schaudien D, Deschl U, Baumgärtner W, Ulrich R (2012) Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler’s murine encephalomyelitis. Acta Neuropathol 124:127–142CrossRefPubMedGoogle Scholar
  16. Harding J, Roberts RM, Mirochnitchenko O (2013) Large animal models for stem cell therapy. Stem Cell Res Ther 4:23CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heinrich F, Jungwirth N, Carlson R, Tipold A, Böer M, Scheibe T, Molnár V, von Dörnberg K, Spitzbarth I, Puff C, Wohlsein P, Baumgärtner W (2015) Immunophenotyping of immune cell populations in the raccoon (Procyon lotor). Vet Immunol Immunopathol 168:140–146CrossRefPubMedGoogle Scholar
  18. Herder V, Hansmann F, Stangel M, Schaudien D, Rohn K, Baumgärtner W, Beineke A (2012) Cuprizone inhibits demyelinating leukomyelitis by reducing immune responses without virus exacerbation in an infectious model of multiple sclerosis. J Neuroimmunol 244:84–93CrossRefPubMedGoogle Scholar
  19. Hernigou P (2015) Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. Int Orthop 39:807–817CrossRefPubMedGoogle Scholar
  20. Hoogduijn MJ, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke MH (2010) The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 10:1496–1500CrossRefPubMedGoogle Scholar
  21. Ingulli E (2010) Mechanism of cellular rejection in transplantation. Pediatr Nephrol 25:61–74CrossRefPubMedGoogle Scholar
  22. Jeffery ND, Smith PM, Lakatos A, Ibanez C, Ito D, Franklin RJ (2006) Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord 44:584–593CrossRefPubMedGoogle Scholar
  23. Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77CrossRefPubMedGoogle Scholar
  24. Kang ES, Ha KY, Kim YH (2012) Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes. J Korean Med Sci 27:586–593CrossRefPubMedPubMedCentralGoogle Scholar
  25. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216CrossRefPubMedGoogle Scholar
  26. Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396CrossRefPubMedGoogle Scholar
  27. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896CrossRefPubMedGoogle Scholar
  28. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M (2011) Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci 91:18–24CrossRefPubMedGoogle Scholar
  30. Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264CrossRefPubMedGoogle Scholar
  31. Nessler J, Benardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janssen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ, van Velthoven C, Hansmann F, Skripuletz T, Stangel M (2013) Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 8:e69795CrossRefPubMedPubMedCentralGoogle Scholar
  32. Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S (2012) Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells—a comparative study. Vet Res Commun 36:139–148CrossRefPubMedGoogle Scholar
  33. Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB (2005) Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 140:138–143CrossRefPubMedGoogle Scholar
  34. Salinas Tejedor L, Berner G, Jacobsen K, Gudi V, Jungwirth N, Hansmann F, Gingele S, Prajeeth CK, Baumgärtner W, Hoffmann A, Skripuletz T, Stangel M (2015) Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain Behav Immun 50:155–165CrossRefPubMedGoogle Scholar
  35. Santini MT, Rainaldi G, Indovina PL (2000) Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit Rev Oncol Hematol 36:75–87CrossRefPubMedGoogle Scholar
  36. Screven R, Kenyon E, Myers MJ, Yancy HF, Skasko M, Boxer L, Bigley EC 3rd, Borjesson DL, Zhu M (2014) Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet Immunol Immunopathol 161:21–31CrossRefPubMedGoogle Scholar
  37. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478CrossRefPubMedGoogle Scholar
  38. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35CrossRefPubMedGoogle Scholar
  39. Spitzbarth I, Baumgärtner W, Beineke A (2012) The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 147:6–24CrossRefPubMedGoogle Scholar
  40. Stein VM, Czub M, Hansen R, Leibold W, Moore PF, Zurbriggen A, Tipold A (2004) Characterization of canine microglial cells isolated ex vivo. Vet Immunol Immunopathol 99:73–85CrossRefPubMedGoogle Scholar
  41. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736CrossRefPubMedGoogle Scholar
  42. Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W (2008) Limited remyelination in Theiler’s murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603–620CrossRefPubMedGoogle Scholar
  43. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68:419–422CrossRefPubMedGoogle Scholar
  44. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010). Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289Google Scholar
  45. von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578CrossRefGoogle Scholar
  46. Weinger JG, Weist BM, Plaisted WC, Klaus SM, Walsh CM, Lane TE (2012) MHC mismatch results in neural progenitor cell rejection following spinal cord transplantation in a model of viral-induced demyelination. Stem Cells 30:2584–2595CrossRefPubMedPubMedCentralGoogle Scholar
  47. Whitworth DJ, Banks TA (2014) Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J 202:416–424CrossRefPubMedGoogle Scholar
  48. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nicole Jungwirth
    • 1
    • 2
  • Laura Salinas Tejedor
    • 2
    • 3
  • Wen Jin
    • 1
    • 2
  • Viktoria Gudi
    • 2
    • 3
  • Thomas Skripuletz
    • 3
  • Veronika Maria Stein
    • 4
  • Andrea Tipold
    • 2
    • 4
  • Andrea Hoffmann
    • 5
  • Martin Stangel
    • 2
    • 3
  • Wolfgang Baumgärtner
    • 1
    • 2
    Email author
  • Florian Hansmann
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Veterinary Medicine HannoverHanoverGermany
  2. 2.Center for Systems NeuroscienceHannoverGermany
  3. 3.Clinical Neuroimmunology and Neurochemistry, Department of NeurologyHannover Medical SchoolHannoverGermany
  4. 4.Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine HannoverHannoverGermany
  5. 5.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany

Personalised recommendations