Advertisement

Journal of Molecular Neuroscience

, Volume 64, Issue 2, pp 242–251 | Cite as

Evaluation of the Mitochondria-Related Redox and Bioenergetics Effects of Gastrodin in SH-SY5Y Cells Exposed to Hydrogen Peroxide

  • Marcos Roberto de OliveiraEmail author
  • Flávia Bittencourt Brasil
  • Cristina Ribas Fürstenau
Article

Abstract

Mitochondrion is the main site of ATP production in animal cells and also orchestrates signaling pathways associated with cell survival and death. Mitochondrial dysfunction has been linked to bioenergetics and redox impairment in human diseases, such as neurodegeneration and cardiovascular disease. Protective agents able to attenuate mitochondrial impairment are of pharmacological interest. Gastrodin (GAS; 4-hydroxybenzyl alcohol 4-O-beta-d-glucoside) is a phenolic glucoside obtained from the Chinese herbal medicine Gastrodia elata Blume and exhibits antioxidant, anti-inflammatory, and antiapoptotic effects in several cell types. GAS is able to cross the blood-brain barrier, reducing the impact of different stressors on the cognition of experimental animals. In the present work, we investigated whether GAS would protect mitochondria of human SH-SY5Y neuroblastoma cells against an exposure to a pro-oxidant agent. The cells were treated with GAS at 25 μM for 30 min before the administration of hydrogen peroxide (H2O2) at 300 μM for an additional 3 or 24 h, depending on the assay. We evaluated both mitochondrial redox state and function parameters and analyzed the mechanism by which GAS protected mitochondria in this experimental model. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor suppressed the GAS-induced mitochondrial protection seen here. Moreover, Nrf2 knockdown abrogated the effects of GAS on cell viability, indicating a potential role for Nrf2 in both mitochondrial and cellular protection promoted by GAS. Further research would be necessary to investigate whether GAS would be able to induce similar effects in in vivo experimental models.

Keywords

Gastrodin Mitochondria Bioenergetics Redox impairment Nrf2 

Notes

Acknowledgments

This work was supported by CNPq. FBB receives financial support from the FOPESQ/UFF.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta 1863(2):585–597.  https://doi.org/10.1016/j.bbadis.2016.11.005 CrossRefPubMedGoogle Scholar
  2. Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Metabolic dysfunction in Parkinson’s disease: bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull 133:12–30.  https://doi.org/10.1016/j.brainresbull.2017.03.009 CrossRefPubMedGoogle Scholar
  3. Arnold S (2012) The power of life—cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12(1):46–56.  https://doi.org/10.1016/j.mito.2011.05.003 CrossRefPubMedGoogle Scholar
  4. Broadley SA, Hartl FU (2008) Mitochondrial stress signaling: a pathway unfolds. Trends Cell Biol 18(1):1–4.  https://doi.org/10.1016/j.tcb.2007.11.003 CrossRefPubMedGoogle Scholar
  5. Chen WC, Lai YS, Lin SH, Lu KH, Lin YE, Panyod S, Ho CT, Sheen LY (2016) Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J Ethnopharmacol 182:190–199.  https://doi.org/10.1016/j.jep.2016.02.001 CrossRefPubMedGoogle Scholar
  6. Chen J, Gu YT, Xie JJ, Wu CC, Xuan J, Guo WJ, Yan YZ, Chen L, Wu YS, Zhang XL, Xiao J, Wang XY (2017a) Gastrodin reduces IL-1β-induced apoptosis, inflammation, and matrix catabolism in osteoarthritis chondrocytes and attenuates rat cartilage degeneration in vivo. Biomed Pharmacother 97:642–651.  https://doi.org/10.1016/j.biopha.2017.10.067 CrossRefPubMedGoogle Scholar
  7. Chen L, Liu X, Wang H, Qu M (2017b) Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull 33(3):264–272.  https://doi.org/10.1007/s12264-016-0084-z CrossRefPubMedGoogle Scholar
  8. Chong SJ, Low IC, Pervaiz S (2014) Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 19 Pt A:39–48.  https://doi.org/10.1016/j.mito.2014.06.002 CrossRefPubMedGoogle Scholar
  9. Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, Simon RP, Xiong ZG (2011) Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal 14(10):1815–1827.  https://doi.org/10.1089/ars.2010.3549 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costa SL, Silva VD, Dos Santos Souza C, Santos CC, Paris I, Muñoz P, Segura-Aguilar J (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30(1):41–52.  https://doi.org/10.1007/s12640-016-9600-1 CrossRefPubMedGoogle Scholar
  11. de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267–140213.  https://doi.org/10.1155/2015/140267 CrossRefGoogle Scholar
  12. de Oliveira MR (2016a) Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol Lett 258:185–191.  https://doi.org/10.1016/j.toxlet.2016.07.001 CrossRefPubMedGoogle Scholar
  13. de Oliveira MR (2016b) Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 29:35–44.  https://doi.org/10.1016/j.mito.2016.05.005 CrossRefPubMedGoogle Scholar
  14. de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66.  https://doi.org/10.1016/j.neuint.2015.12.006 CrossRefPubMedGoogle Scholar
  15. de Oliveira MR, Moreira JC (2007) Acute and chronic vitamin A supplementation at therapeutic doses induces oxidative stress in submitochondrial particles isolated from cerebral cortex and cerebellum of adult rats. Toxicol Lett 173(3):145–150.  https://doi.org/10.1016/j.toxlet.2007.07.002 CrossRefPubMedGoogle Scholar
  16. de Oliveira MR, Soares Oliveira MW, Müller Hoff ML, Behr GA, da Rocha RF, Fonseca Moreira JC (2009) Evaluation of redox and bioenergetics states in the liver of vitamin A-treated rats. Eur J Pharmacol 610(1-3):99–105.  https://doi.org/10.1016/j.ejphar.2009.03.046 CrossRefPubMedGoogle Scholar
  17. de Oliveira MR, da Rocha RF, Stertz L, Fries GR, de Oliveira DL, Kapczinski F, Moreira JC (2011) Total and mitochondrial nitrosative stress, decreased brain-derived neurotrophic factor (BDNF) levels and glutamate uptake, and evidence of endoplasmic reticulum stress in the hippocampus of vitamin A-treated rats. Neurochem Res 36(3):506–517.  https://doi.org/10.1007/s11064-010-0372-3 CrossRefPubMedGoogle Scholar
  18. de Oliveira MR, da Rocha RF, Pasquali MA, Moreira JC (2012) The effects of vitamin A supplementation for 3 months on adult rat nigrostriatal axis: increased monoamine oxidase enzyme activity, mitochondrial redox dysfunction, increased β-amyloid(1-40) peptide and TNF-α contents, and susceptibility of mitochondria to an in vitro H2O2 challenge. Brain Res Bull 87(4-5):432–444.  https://doi.org/10.1016/j.brainresbull.2012.01.005 CrossRefPubMedGoogle Scholar
  19. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015a) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308.  https://doi.org/10.1016/j.phrs.2015.08.021 CrossRefPubMedGoogle Scholar
  20. de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015b) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406.  https://doi.org/10.1016/j.cbi.2015.11.003 CrossRefPubMedGoogle Scholar
  21. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016a) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860(4):727–745.  https://doi.org/10.1016/j.bbagen.2016.01.017 CrossRefPubMedGoogle Scholar
  22. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016b) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34(5):813–826.  https://doi.org/10.1016/j.biotechadv.2016.04.004 CrossRefPubMedGoogle Scholar
  23. de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016c) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549.  https://doi.org/10.1016/j.biotechadv.2015.12.014 CrossRefPubMedGoogle Scholar
  24. de Oliveira MR, Ferreira GC, Schuck PF (2016d) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol In Vitro 32:41–54.  https://doi.org/10.1016/j.tiv.2015.12.005 CrossRefPubMedGoogle Scholar
  25. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Bosco SM (2016e) Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox Res 30(3):367–379.  https://doi.org/10.1007/s12640-016-9620-x CrossRefPubMedGoogle Scholar
  26. de Oliveira MR, da Costa Ferreira G, Peres A, Bosco SM (2017a) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SH-SY5Y cells: role for Nrf2. Mol Neurobiol.  https://doi.org/10.1007/s12035-016-0372-7
  27. de Oliveira MR, Schuck PF, Bosco SMD (2017b) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in paraquat-treated human neuroblastoma SH-SY5Y cells. Mol Neurobiol 54(6):4597–4608.  https://doi.org/10.1007/s12035-016-0009-x CrossRefPubMedGoogle Scholar
  28. de Oliveira MR, Brasil FB, Andrade CMB (2017c) Naringenin attenuates H2O2-induced mitochondrial dysfunction by an Nrf2-dependent mechanism in SH-SY5Y cells. Neurochem Res 42(11):3341–3350.  https://doi.org/10.1007/s11064-017-2376-8 CrossRefPubMedGoogle Scholar
  29. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516.  https://doi.org/10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Enríquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78(1):533–561.  https://doi.org/10.1146/annurev-physiol-021115-105031 CrossRefPubMedGoogle Scholar
  31. Erpapazoglou Z, Mouton-Liger F, Corti O (2017) From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochem Int 109:171–183.  https://doi.org/10.1016/j.neuint.2017.03.021 CrossRefPubMedGoogle Scholar
  32. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681.  https://doi.org/10.1242/jcs.171017 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345(6203):1250256.  https://doi.org/10.1126/science.1250256 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ito YA, Di Polo A (2017) Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 36:186–192.  https://doi.org/10.1016/j.mito.2017.08.014 CrossRefPubMedGoogle Scholar
  35. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2017) Resveratrol and brain mitochondria: a review. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0448-z
  36. Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88.  https://doi.org/10.1016/j.neuint.2014.06.003 CrossRefPubMedGoogle Scholar
  37. Jin YN, Yu YV, Gundemir S, Jo C, Cui M, Tieu K, Johnson GV (2013) Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One 8(3):e57932.  https://doi.org/10.1371/journal.pone.0057932 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jin X, Liu Q, Jia L, Li M, Wang X (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 35(3):323–333.  https://doi.org/10.1007/s10571-014-0128-8 CrossRefPubMedGoogle Scholar
  39. Jonckheere AI, Smeitink JA, Rodenburg RJ (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35(2):211–225.  https://doi.org/10.1007/s10545-011-9382-9 CrossRefPubMedGoogle Scholar
  40. Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta 1861(11):2822–2829.  https://doi.org/10.1016/j.bbagen.2017.07.027 CrossRefPubMedGoogle Scholar
  41. Kim J, Keum YS (2016) NRF2, a key regulator of antioxidants with two faces towards cancer. Oxidative Med Cell Longev 2016:2746457.  https://doi.org/10.1155/2016/2746457 Google Scholar
  42. Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee YM, Ku SK, Jung Y, Kwak MK (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res 71:2260–2275.  https://doi.org/10.1158/0008-5472.CAN-10-3007 CrossRefPubMedGoogle Scholar
  43. Klamt F, Roberto de Oliveira M, Moreira JC (2005) Retinol induces permeability transition and cytochrome c release from rat liver mitochondria. Biochim Biophys Acta 1726(1):14–20.  https://doi.org/10.1016/j.bbagen.2005.07.016 CrossRefPubMedGoogle Scholar
  44. Koppenhöfer D, Kettenbaum F, Susloparova A, Law JK, Vu XT, Schwab T, Schäfer KH, Ingebrandt S (2015) Neurodegeneration through oxidative stress: monitoring hydrogen peroxide induced apoptosis in primary cells from the subventricular zone of BALB/c mice using field-effect transistors. Biosens Bioelectron 67:490–496.  https://doi.org/10.1016/j.bios.2014.09.012 CrossRefPubMedGoogle Scholar
  45. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231.  https://doi.org/10.1021/tx00026a012 CrossRefPubMedGoogle Scholar
  46. Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH (2016) Gastrodin reversed the traumatic stress-induced depressed-like symptoms in rats. J Nat Med 70(4):749–759.  https://doi.org/10.1007/s11418-016-1010-4 CrossRefPubMedGoogle Scholar
  47. Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24(10):800–808.  https://doi.org/10.1038/nsmb.3460 CrossRefPubMedGoogle Scholar
  48. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153.  https://doi.org/10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  49. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT (2014) Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457(3):415–424.  https://doi.org/10.1042/BJ20130863 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53(1):401–426.  https://doi.org/10.1146/annurev-pharmtox-011112-140320 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  52. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295.  https://doi.org/10.1074/jbc.R900010200 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Oliveira MR (2015) The neurotoxic effects of vitamin A and retinoids. An Acad Bras Cienc 87(2 suppl):1361–1373.  https://doi.org/10.1590/0001-3765201520140677 CrossRefPubMedGoogle Scholar
  54. Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14(7):1243–1247.  https://doi.org/10.1038/sj.cdd.4402135 CrossRefPubMedGoogle Scholar
  55. Peixoto PM, Dejean LM, Kinnally KW (2012) The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 12(1):14–23.  https://doi.org/10.1016/j.mito.2011.03.003 CrossRefPubMedGoogle Scholar
  56. Peng Z, Wang H, Zhang R, Chen Y, Xue F, Nie H, Chen Y, Wu D, Wang Y, Wang H, Tan Q (2013) Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 62(5):537–545PubMedGoogle Scholar
  57. Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res 40(4):661–673.  https://doi.org/10.1007/s11064-015-1513-5 CrossRefPubMedGoogle Scholar
  58. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116.  https://doi.org/10.1016/j.mito.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92.  https://doi.org/10.1006/abbi.1996.0146 CrossRefPubMedGoogle Scholar
  60. Quesada A, Ogi J, Schultz J, Handforth A (2011) C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase Cϵ/Nrf2 pathway. J Neurosci Res 89(3):394–405.  https://doi.org/10.1002/jnr.22543 CrossRefPubMedGoogle Scholar
  61. Robinson JB Jr, Srere PA (1985) Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem 260(19):10800–10805PubMedGoogle Scholar
  62. Sachdeva MM, Cano M, Handa JT (2014) Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res 119:111–114.  https://doi.org/10.1016/j.exer.2013.10.024 CrossRefPubMedGoogle Scholar
  63. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86(1):715–748.  https://doi.org/10.1146/annurev-biochem-061516-045037 CrossRefPubMedGoogle Scholar
  64. Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS (2015) Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta 1847(11):1424–1433.  https://doi.org/10.1016/j.bbabio.2015.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang Q, Chen G, Zeng S (2008) Distribution and metabolism of gastrodin in rat brain. J Pharm Biomed Anal 46(2):399–404.  https://doi.org/10.1016/j.jpba.2007.10.017 CrossRefPubMedGoogle Scholar
  66. Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34(2):227–234.  https://doi.org/10.1007/s10571-013-0006-9 CrossRefPubMedGoogle Scholar
  67. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10(5):411–418.  https://doi.org/10.1016/j.mito.2010.05.014 CrossRefPubMedGoogle Scholar
  68. Xiao MM, Zhang YQ, Wang WT, Han WJ, Lin Z, Xie RG, Cao Z, Lu N, Hu SJ, Wu SX, Dong H, Luo C (2016) Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation. Sci Rep 6(1):37251.  https://doi.org/10.1038/srep37251 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang XD, Zhu J, Yang R, Liu JP, Li L, Zhang HB (2007) Phenolic constituents from the rhizomes of Gastrodia elata. Nat Prod Res 21(2):180–186.  https://doi.org/10.1080/14786410601081997 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marcos Roberto de Oliveira
    • 1
    Email author
  • Flávia Bittencourt Brasil
    • 2
  • Cristina Ribas Fürstenau
    • 3
  1. 1.Department of Chemistry/ICETFederal University of Mato Grosso (UFMT)CuiabaBrazil
  2. 2.Universidade Federal FluminenseRio de JaneiroBrazil
  3. 3.Instituto de Genética e Bioquímica (INGEB)Universidade Federal de Uberlândia (UFU)Patos de MinasBrazil

Personalised recommendations