Journal of Molecular Neuroscience

, Volume 63, Issue 3–4, pp 422–430 | Cite as

Endogenous TRPV4 Expression of a Hybrid Neuronal Cell Line N18D3 and Its Utilization to Find a Novel Synthetic Ligand

  • Sungjae Yoo
  • Seung-In Choi
  • Seul Lee
  • Jiho Song
  • Chungmi Yang
  • Sangsu Bang
  • Seung Up Kim
  • Kyung Hoon MinEmail author
  • Sun Wook HwangEmail author


Primary sensory afferent neurons detect environmental and painful stimuli at their peripheral termini. A group of transient receptor potential ion channels (TRPs) are expressed in these neurons and constitute sensor molecules for the stimuli such as thermal, mechanical, and chemical insults. We examined whether a mouse sensory neuronal line, N18D3, shows the sensory TRP expressions and their functionality. In Ca2+ imaging and electrophysiology with these cells, putative TRPV4-mediated responses were observed. TRPV4-specific sensory modalities including sensitivity to a specific agonist, hypotonicity, or an elevated temperature were reproduced in N18D3 cells. Electrophysiological and pharmacological profiles conformed to those from native TRPV4 of primarily cultured neurons. The TRPV4 expression in N18D3 was also confirmed by RT-PCR and Western blot analyses. Thus, N18D3 cells may represent TRPV4-expressing sensory neurons. Further, using this cell lines, we discovered a novel synthetic TRPV4-specific agonist, MLV-0901. These results suggest that N18D3 is a reliable cell line for functional and pharmacological TRPV4 assays. The chemical information from the novel agonist will contribute to TRPV4-targeting drug design.


TRPV4 N18D3 Sensory neurons Novel ligand MLV-0901 



This work was supported by grants from the National Research Foundation of Korea (NRF-2017R1A2B2001817, NRF-2017M3C7A1025600) and Korea Health Technology R&D Project of Ministry of Health & Welfare (HI15C2099).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118(1–2):70–79CrossRefPubMedGoogle Scholar
  2. Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26(14):3864–3874CrossRefPubMedGoogle Scholar
  3. Alexander R, Kerby A, Aubdool AA, Power AR, Grover S, Gentry C, Grant AD (2013) 4α-phorbol 12,13-didecanoate activates cultured mouse dorsal root ganglia neurons independently of TRPV4. Br J Pharmacol 168:761–772CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bang S, Hwang SW (2009) Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J Gen Physiol 133(3):257–262CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW (2007a) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26(9):2516–2523CrossRefPubMedGoogle Scholar
  6. Bang S, Kim KY, Yoo S, Lee SH, Hwang SW (2007b) Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 425(2):120–125CrossRefPubMedGoogle Scholar
  7. Bang S, Yoo S, Yang TJ, Cho H, Kim YG, Hwang (2010a) Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br J Pharmacol 161(3):707–720CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2010b) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285(25):19,362–19,371CrossRefGoogle Scholar
  9. Bang S, Yoo S, Yang T, Cho H, Hwang S (2011a) 17(R)-resolvin D1 specifically inhibits TRPV3 leading to peripheral antinociception. Br J Pharmacol 165(3):683–692CrossRefGoogle Scholar
  10. Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2011b) Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 152(5):1156–1164CrossRefPubMedGoogle Scholar
  11. Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2012) Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br J Pharmacol 166(4):1433–1443CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bender FL, Mederos YSM, Li Y, Ji A, Weihe E, Gudermann T, Schafer MK (2005) The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol Biochem 15(1–4):183–194CrossRefPubMedGoogle Scholar
  13. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W, Blackshaw LA (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134(7):2059–2069CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen W, Mi R, Haughey N, Oz M, Hoke A (2007) Immortalization and characterization of a nociceptive dorsal root ganglion sensory neuronal line. J Peripher Nerv Syst 12(2):121–130CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161CrossRefPubMedGoogle Scholar
  16. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414PubMedGoogle Scholar
  17. Hwang SW, Oh U (2007) Current concepts of nociception: nociceptive molecular sensors in sensory neurons. Curr Opin Anaesthesiol 20(5):427–434CrossRefPubMedGoogle Scholar
  18. Jahnel R, Bender O, Munter LM, Dreger M, Gillen C, Hucho F (2003) Dual expression of mouse and rat VRL-1 in the dorsal root ganglion derived cell line F-11 and biochemical analysis of VRL-1 after heterologous expression. Eur J Biochem 270(21):4264–4271CrossRefPubMedGoogle Scholar
  19. Kim JG, Koh SH, Lee YJ, Lee KY, Kim Y, Kim S, Lee MK, Kim SH (2005) Differential effects of diallyl disulfide on neuronal cells depend on its concentration. Toxicology 211(1–2):86–96CrossRefPubMedGoogle Scholar
  20. Kim KY, Bang S, Han S, Nguyen YH, Kang TM, Kang KW, Hwang SW (2008) TRP-independent inhibition of the phospholipase C pathway by natural sensory ligands. Biochem Biophys Res Commun 370(2):295–300CrossRefPubMedGoogle Scholar
  21. Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, HJ Y, Do BR, Kim KS, Jung HK (2004) Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology 25(5):793–802CrossRefPubMedGoogle Scholar
  22. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163CrossRefPubMedPubMedCentralGoogle Scholar
  24. Park SA, Choi KS, Bang JH, Huh K, Kim SU (2000) Cisplatin-induced apoptotic cell death in mouse hybrid neurons is blocked by antioxidants through suppression of cisplatin-mediated accumulation of p53 but not of Fas/Fas ligand. J Neurochem 75(3):946–953CrossRefPubMedGoogle Scholar
  25. Park IH, Kim MK, Kim SU (2008) Ursodeoxycholic acid prevents apoptosis of mouse sensory neurons induced by cisplatin by reducing P53 accumulation. Biochem Biophys Res Commun 377(4):1025–1030CrossRefPubMedGoogle Scholar
  26. Raymon HK, Thode S, Zhou J, Friedman GC, Pardinas JR, Barrere C, Johnson RM, Sah DW (1999) Immortalized human dorsal root ganglion cells differentiate into neurons with nociceptive properties. J Neurosci 19(13):5420–5428PubMedGoogle Scholar
  27. Rimmerman N, Bradshaw HB, Hughes HV, Chen JS, SS H, McHugh D, Vefring E, Jahnsen JA, Thompson EL, Masuda K, Cravatt BF, Burstein S, Vasko MR, Prieto AL, O'Dell DK, Walker JM (2008) N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons. Mol Pharmacol 74(1):213–224CrossRefPubMedGoogle Scholar
  28. Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, Liang S, Chen Y, Mercado ML, Feng X, Bennett F, von Schack D, McDonald L, Zaleska MM, Wood A, Reinhart PH, Magolda RL, Skotnicki J, Pangalos MN, Koehn FE, Carter GT, Abou-Gharbia M, Graziani EI (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A 105(1):33–38CrossRefPubMedGoogle Scholar
  29. Ryu JJ, Yoo S, Kim KY, Park JS, Bang S, Lee SH, Yang TJ, Cho H, Hwang SW (2010) Laser modulation of heat and capsaicin receptor TRPV1 leads to thermal antinociception. J Dent Res 89(12):1455–1460CrossRefPubMedGoogle Scholar
  30. Sanfeliu C, Wright JM, Kim SU (1999) Neurotoxicity of isoniazid and its metabolites in cultures of mouse dorsal root ganglion neurons and hybrid neuronal cell line. Neurotoxicology 20(6):935–944PubMedGoogle Scholar
  31. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522CrossRefPubMedPubMedCentralGoogle Scholar
  32. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829CrossRefPubMedGoogle Scholar
  33. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702CrossRefPubMedGoogle Scholar
  34. Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278(25):22,664–22,668CrossRefGoogle Scholar
  35. Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389(3):490–494CrossRefPubMedGoogle Scholar
  36. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282(17):12,796–12,803CrossRefGoogle Scholar
  37. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277(49):47,044–47,051CrossRefGoogle Scholar
  38. Wood JN, Bevan SJ, Coote PR, Dunn PM, Harmar A, Hogan P, Latchman DS, Morrison C, Rougon G, Theveniau M et al (1990) Novel cell lines display properties of nociceptive sensory neurons. Proc Biol Sci 241(1302):187–194CrossRefPubMedGoogle Scholar
  39. Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, Reeh PW (2009) Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 4(2):174–196CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesKorea University College of MedicineSeongbuk-GuSouth Korea
  2. 2.College of PharmacyChung-Ang UniversityDongjak-GuSouth Korea
  3. 3.Medical Research InstituteChung-Ang University School of MedicineSeoulSouth Korea
  4. 4.Division of Neurology, Department of Medicine, UBC HospitalUniversity of British ColumbiaVancouverCanada

Personalised recommendations