Journal of Molecular Neuroscience

, Volume 63, Issue 3–4, pp 396–402 | Cite as

Association of TNFSF4 Polymorphisms with Neuromyelitis Optica Spectrum Disorders in a Chinese Population

  • Zhiyun Lian
  • Ju Liu
  • Ziyan Shi
  • Hongxi Chen
  • Qin Zhang
  • Huiru Feng
  • Qin Du
  • Xiaohui Miao
  • Hongyu Zhou


The tumor necrosis factor ligand superfamily member 4 (TNFSF4) gene encodes a vital co-stimulatory molecule of the immune system and has been identified as a susceptibility locus for systemic lupus erythematosus, systemic sclerosis, and primary Sjögren’s syndrome. However, the association of TNFSF4 polymorphisms with neuromyelitis optica spectrum disorders (NMOSD), an inflammatory, demyelinating autoimmune disease of the central nervous system, has not yet been investigated. To evaluate whether TNFSF4 polymorphisms contribute to risk of NMOSD, four single-nucleotide polymorphisms (SNPs) (rs1234315, rs2205960, rs704840, and rs844648) were selected and genotyped in a cohort of 312 patients with NMOSD and 487 healthy controls. Our study showed that rs844648 was associated with an increased risk of NMOSD, according to the allelic model (OR = 1.30, 95% CI 1.06–1.59, P = 0.011, Pcorr = 0.044). Significant associations of rs844648 (OR = 1.67, 95% CI 1.17–2.38, P = 0.005, Pcorr = 0.02) and rs704840 (OR = 1.75, 95% CI 1.17–2.63, P = 0.007, Pcorr = 0.027) with NMOSD occurrence were also observed under the recessive model. Moreover, linkage disequilibrium analysis revealed two blocks within TNFSF4; in one block, the haplotype Ars844648Grs704840 significantly increased the risk of NMOSD, whereas Grs844648Trs704840 reduced the risk. This study demonstrates an association between TNFSF4 polymorphisms and susceptibility for the development of NMOSD in the Chinese population.


Neuromyelitis optica spectrum disorders Autoimmune diseases Tumor necrosis factor ligand superfamily member 4 Single-nucleotide polymorphism Genetic association study 


  1. Bossini-Castillo L et al (2011) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis 70:638–641. CrossRefPubMedGoogle Scholar
  2. Chang YK et al (2009) Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:414–420. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Crotty S (2011) Follicular helper CD4 T cells (T-FH). Annu Rev Immunol 29:621–663. CrossRefPubMedGoogle Scholar
  5. Cunninghame Graham DS et al (2008) Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 40:83–89. CrossRefPubMedGoogle Scholar
  6. Fan XL, Jiang YF, Han JM, Liu JY, Wei YF, Jiang XM, Jin T (2016) Circulating memory T follicular helper cells in patients with Neuromyelitis Optica/Neuromyelitis Optica Spectrum disorders. Mediat Inflamm 2016:3678152. Google Scholar
  7. Gourh P et al (2010) Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis 69:550–555. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043–3050. CrossRefPubMedGoogle Scholar
  9. Han JW et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–U1298. CrossRefPubMedGoogle Scholar
  10. Ito T et al (2006) OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci U S A 103:13138–13143. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jacquemin C et al (2015) OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42:1159–1170. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jarius S, Probst C, Borowski K, Franciotta D, Wildemann B, Stoecker W, Wandinger KP (2010) Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen. J Neurol Sci 291:52–56. CrossRefPubMedGoogle Scholar
  13. Kim HJ et al (2010) Common CYP7A1 promoter polymorphism associated with risk of neuromyelitis optica. Neurobiol Dis 37:349–355. CrossRefPubMedGoogle Scholar
  14. Kim JY, Bae JS, Kim HJ, Shin HD (2014) CD58 polymorphisms associated with the risk of neuromyelitis optica in a Korean population. BMC Neurol 14:6. CrossRefGoogle Scholar
  15. Lee YH, Song GG (2012) Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Hum Immunol 73:1050–1054. CrossRefPubMedGoogle Scholar
  16. Lennon VA et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112. CrossRefPubMedGoogle Scholar
  17. Liu J et al (2017) Association of CD58 gene polymorphisms with NMO spectrum disorders in a Han Chinese population. J Neuroimmunol 309:23–30. CrossRefPubMedGoogle Scholar
  18. Lu MM et al (2013) Association of TNFSF4 polymorphisms with systemic lupus erythematosus: a meta-analysis. Mod Rheumatol 23:686–693. CrossRefPubMedGoogle Scholar
  19. Manku H et al (2013) Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet 9:e1003554. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Matiello M et al (2010) Familial neuromyelitis optica. Neurology 75:310–315. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nohara C et al (2001) Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J Immunol 166:2108–2115CrossRefPubMedGoogle Scholar
  22. Nordmark G et al (2011) Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun 12:100–109. CrossRefPubMedGoogle Scholar
  23. Pan Y et al (2013) Association and cumulative effects of GWAS-identified genetic variants for nonsyndromic orofacial clefts in a Chinese population. Environ Mol Mutagen 54:261–267. CrossRefPubMedGoogle Scholar
  24. Pohl M et al (2013) T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol Commun 1:85. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rogers PR, Song JX, Gramaglia I, Killeen N, Croft M (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15:445–455. CrossRefPubMedGoogle Scholar
  27. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98. CrossRefPubMedGoogle Scholar
  28. Shi Z et al (2017) Association of CD40 gene polymorphisms with susceptibility to neuromyelitis optica spectrum disorders. Mol Neurobiol 54(7):5236-5242
  29. So T, Croft M (2007) Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol 179:1427–1430CrossRefPubMedGoogle Scholar
  30. Sun F et al (2013) Association studies of TNFSF4, TNFAIP3 and FAM167A-BLK polymorphisms with primary Sjogren’s syndrome in Han Chinese. J Hum Genet 58:475–479. CrossRefPubMedGoogle Scholar
  31. Wang HH, Zhong XN, Wang K, Qiu W, Li J, Dai YQ, Hu XQ (2012) Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese - a case control study. J Neurol Sci 314:26–28. CrossRefPubMedGoogle Scholar
  32. Wang XL, Yu T, Yan QC, Wang W, Meng N, Li XJ, Luo YH (2016) Significant association between Fc receptor-like 3 polymorphisms (−1901A > G and −658C > T) and neuromyelitis optica (NMO) susceptibility in the Chinese population. Mol Neurobiol 53:686–694. CrossRefPubMedGoogle Scholar
  33. Webb GJ, Hirschfield GM, Lane PJ (2016) OX40, OX40L and autoimmunity: a comprehensive review. Clin Rev Allerg Immu 50:312–332. CrossRefGoogle Scholar
  34. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815. CrossRefPubMedGoogle Scholar
  35. Wingerchuk DM et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yoshioka T et al (2000) Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur J Immunol 30:2815–2823.<2815::aid-immu2815>;2-# CrossRefPubMedGoogle Scholar
  37. Zeka B et al (2015) Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS. Acta Neuropathol 130:783–798. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zephir H et al (2009) Is neuromyelitis optica associated with human leukocyte antigen? Mult Scler 15:571–579. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina

Personalised recommendations