Journal of Molecular Neuroscience

, Volume 61, Issue 2, pp 178–188 | Cite as

Genome-Wide Sequencing Reveals MicroRNAs Downregulated in Cerebral Cavernous Malformations

  • Souvik KarEmail author
  • Kiran Kumar Bali
  • Arpita Baisantry
  • Robert Geffers
  • Amir Samii
  • Helmut Bertalanffy


Cerebral cavernous malformations (CCM) are vascular lesions associated with loss-of-function mutations in one of the three genes encoding KRIT1 (CCM1), CCM2, and PDCD10. Recent understanding of the molecular mechanisms that lead to CCM development is limited. The role of microRNAs (miRNAs) has been demonstrated in vascular pathologies resulting in loss of tight junction proteins, increased vascular permeability and endothelial cell dysfunction. Since the relevance of miRNAs in CCM pathophysiology has not been elucidated, the primary aim of the study was to identify the miRNA-mRNA expression network associated with CCM. Using small RNA sequencing, we identified a total of 764 matured miRNAs expressed in CCM patients compared to the healthy brains. The expression of the selected miRNAs was validated by qRT-PCR, and the results were found to be consistent with the sequencing data. Upon application of additional statistical stringency, five miRNAs (let-7b-5p, miR-361-5p, miR-370-3p, miR-181a-2-3p, and miR-95-3p) were prioritized to be top CCM-relevant miRNAs. Further in silico analyses revealed that the prioritized miRNAs have a direct functional relation with mRNAs, such as MIB1, HIF1A, PDCD10, TJP1, OCLN, HES1, MAPK1, VEGFA, EGFL7, NF1, and ENG, which are previously characterized as key regulators of CCM pathology. To date, this is the first study to investigate the role of miRNAs in CCM pathology. By employing cutting edge molecular and in silico analyses on clinical samples, the current study reports global miRNA expression changes in CCM patients and provides a rich source of data set to understand detailed molecular machinery involved in CCM pathophysiology.


Cerebral cavernous malformations MicroRNAs Vascular Pathology In silico analyses Sequencing 



The authors are thankful to the Research Core Unit Transcriptomics (RCUT) of Hannover Medical School for their technical assistance and support with regard to RNA isolation from brain tissue samples.

Compliance with Ethical Standards

The study was performed in accordance with the guidelines and with permission by the Ethical Committee of the Hannover Medical School, Germany (Approval Number 6960).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12031_2017_880_MOESM1_ESM.xlsx (13 kb)
Table S1 (XLSX 13 kb)
12031_2017_880_MOESM2_ESM.xlsx (95 kb)
Table S2 (XLSX 95 kb)


  1. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18(5):919–930PubMedGoogle Scholar
  2. Bali KK, Selvaraj D, Satagopam VP, Lu J, Schneider R, Kuner R (2013) Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain. EMBO Mol Med 5(11):1740–1758CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bali KK, Hackenberg M, Lubin A, Kuner R, Devor M (2014) Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing. Mol Pain 10:22CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) "Controlling the false discovery rate: a practical and powerful approach to multiple testing." Journal of the Royal Statistical Society. Series B (Methodological) 57(1):289–300Google Scholar
  5. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E, N. Societe Francaise de (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51CrossRefPubMedGoogle Scholar
  6. Bertalanffy H, Kuhn G, Scheremet R, Seeger W (1992) Indications for surgery and prognosis in patients with cerebral cavernous angiomas. Neurol Med Chir (Tokyo) 32(9):659–666CrossRefGoogle Scholar
  7. Bertalanffy H, Benes L, Miyazawa T, Alberti O, Siegel AM, Sure U (2002) Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev 25(1–2):1–53 discussion 54-55CrossRefPubMedGoogle Scholar
  8. Bozinov O, Hatano T, Sarnthein J, Burkhardt JK, Bertalanffy H (2010) Current clinical management of brainstem cavernomas. Swiss Med Wkly 140:w13120PubMedGoogle Scholar
  9. Capece V, Garcia Vizcaino JC, Vidal R, Rahman RU, Pena Centeno T, Shomroni O, Suberviola I, Fischer A, Bonn S (2015) Oasis: online analysis of small RNA deep sequencing data. Bioinformatics 31(13):2205–2207CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86CrossRefPubMedGoogle Scholar
  11. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS, Fang T, Zhao H, Padmanabhan C, Sun R, Wang DL, Jin H, Chau GY, Huang HD, Hsiao M, Shyy JY (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123(3):1057–1067CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen J, Venkat P, Zacharek A, Chopp M (2014) Neurorestorative therapy for stroke. Front Hum Neurosci 8:382PubMedPubMedCentralGoogle Scholar
  13. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21CrossRefPubMedGoogle Scholar
  14. Dong H, Siu H, Luo L, Fang X, Jin L, Xiong M (2010) Investigation gene and microRNA expression in glioblastoma. BMC Genomics 11(Suppl 3):S16CrossRefPubMedPubMedCentralGoogle Scholar
  15. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127(Pt 4):701–707CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847CrossRefPubMedGoogle Scholar
  17. Ferreira R, Santos T, Amar A, Tahara SM, Chen TC, Giannotta SL, Hofman FM (2014) MicroRNA-18a improves human cerebral arteriovenous malformation endothelial cell function. Stroke 45(1):293–297CrossRefPubMedGoogle Scholar
  18. Fisher OS, Boggon TJ (2014) Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71(10):1881–1892CrossRefPubMedGoogle Scholar
  19. Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587(3):272–277CrossRefPubMedGoogle Scholar
  20. Gingras AR, Liu JJ, Ginsberg MH (2012) Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol 199(1):39–48CrossRefPubMedPubMedCentralGoogle Scholar
  21. Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179(2):247–254CrossRefPubMedPubMedCentralGoogle Scholar
  22. Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P, Retta SF (2010) KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One 5(7):e11786CrossRefPubMedPubMedCentralGoogle Scholar
  23. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3(116):ra26CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148CrossRefPubMedGoogle Scholar
  25. Jakimovski D, Schneider H, Frei K, Kennes LN, Bertalanffy H (2014) Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg 121(3):613–620CrossRefPubMedGoogle Scholar
  26. Kala R, Peek GW, Hardy TM, Tollefsbol TO (2013) MicroRNAs: an emerging science in cancer epigenetics. J Clin Bioinforma 3(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GF, Gerber AP, Detmar M (2012) The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One 7(11):e49568CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kar S, Samii A, Bertalanffy H (2015) PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 38(2):229–236 discussion 236-227CrossRefPubMedGoogle Scholar
  29. Kar, S., A. Baisantry, A. Nabavi and H. Bertalanffy (2016). "Role of Delta-Notch signaling in cerebral cavernous malformations." Neurosurg RevGoogle Scholar
  30. Khan HA, Zhao Y, Wang L, Li Q, Du YA, Dan Y, Huo LJ (2015) Identification of miRNAs during mouse postnatal ovarian development and superovulation. J Ovarian Res 8:44CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15CrossRefPubMedGoogle Scholar
  32. Li, P., M. Shen, F. Gao, J. Wu, J. Zhang, F. Teng and C. Zhang (2016). "An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress." Mol NeurobiolGoogle Scholar
  33. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930CrossRefPubMedGoogle Scholar
  34. Liquori CL, Berg MJ, Squitieri F, Leedom TP, Ptacek L, Johnson EW, Marchuk DA (2007) Deletions in CCM2 are a common cause of cerebral cavernous malformations. Am J Hum Genet 80(1):69–75CrossRefPubMedGoogle Scholar
  35. Liu J, Jennings SF, Tong W, Hong H (2011) Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng 4(10):666–676CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, Jeyaseelan K (2013) microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One 8(6):e66393CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA (2016) Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 30(8):2662–2672CrossRefPubMedGoogle Scholar
  38. Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y, Deng ZF (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1–2):45–51CrossRefPubMedGoogle Scholar
  39. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550CrossRefPubMedPubMedCentralGoogle Scholar
  40. Motameny S, Wolters S, Nurnberg P, Schumacher B (2010) Next generation sequencing of miRNAs - strategies, resources and methods. Genes (Basel) 1(1):70–84Google Scholar
  41. Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19(2):295–296CrossRefPubMedGoogle Scholar
  42. Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G, Duchene J, Mickoleit M, Dietrich AC, Ramspacher C, Steed E, Manet-Dupe S, Benz A, Hassel D, Vermot J, Huisken J, Tournier-Lasserve E, Felbor U, Sure U, Albiges-Rizo C, Abdelilah-Seyfried S (2015) Regulation of beta1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell 32(2):181–190CrossRefPubMedGoogle Scholar
  43. Rerat K, Parker F, Nasser G, Vidaud D, Riant F, Tournier-Lasserve E, Denier C (2015) Occurrence of multiple cerebral cavernous malformations in a patient with neurofibromatosis type 1. J Neurol Sci 350(1–2):98–100CrossRefPubMedGoogle Scholar
  44. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277(5):1070–1075CrossRefPubMedGoogle Scholar
  45. Samii M, Eghbal R, Carvalho GA, Matthies C (2001) Surgical management of brainstem cavernomas. J Neurosurg 95(5):825–832CrossRefPubMedGoogle Scholar
  46. Schneider H, Errede M, Ulrich NH, Virgintino D, Frei K, Bertalanffy H (2011) Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations. J Neuropathol Exp Neurol 70(6):417–429CrossRefPubMedGoogle Scholar
  47. Schulz GB, Wieland E, Wustehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A (2015) Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes. Stroke 46(5):1337–1343CrossRefPubMedGoogle Scholar
  48. Seok JK, Lee SH, Kim MJ, Lee YM (2014) MicroRNA-382 induced by HIF-1alpha is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res 42(12):8062–8072CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  50. Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104(4):442–454CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sure U, Freman S, Bozinov O, Benes L, Siegel AM, Bertalanffy H (2005) Biological activity of adult cavernous malformations: a study of 56 patients. J Neurosurg 102(2):342–347CrossRefPubMedGoogle Scholar
  52. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of MicroRNAs in young stroke patients. PLoS One 4(11):e7689CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang P, Luo Y, Duan H, Xing S, Zhang J, Lu D, Feng J, Yang D, Song L, Yan X (2013) MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol 33(18):3689–3699CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang HW, Lo HH, Chiu YL, Chang SJ, Huang PH, Liao KH, Tasi CF, Wu CH, Tsai TN, Cheng CC, Cheng SM (2014) Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease. PLoS One 9(5):e98070CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 107(28):12640–12645CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yin KJ, Hamblin M, Chen YE (2015) Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol 13(3):352–365CrossRefPubMedPubMedCentralGoogle Scholar
  59. You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y (2013) Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17(3):407–418CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yuan Y, Kang R, Yu Y, Liu J, Zhang Y, Shen C, Wang J, Wu P, Shen C, Wang Z (2016) Crosstalk between miRNAs and their regulated genes network in stroke. Sci Rep 6:20429CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14(17):2521–2531CrossRefPubMedGoogle Scholar
  62. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120(8):2795–2804CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Souvik Kar
    • 1
    Email author
  • Kiran Kumar Bali
    • 2
  • Arpita Baisantry
    • 3
  • Robert Geffers
    • 4
  • Amir Samii
    • 1
  • Helmut Bertalanffy
    • 1
  1. 1.International Neuroscience InstituteHannoverGermany
  2. 2.Pharmacology Institute, Medical Faculty HeidelbergHeidelberg UniversityHeidelbergGermany
  3. 3.Department of Kidney, Liver and Metabolic Diseases, Children’s HospitalHannover Medical SchoolHannoverGermany
  4. 4.Genome Analytics Research GroupHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations