Advertisement

Journal of Molecular Neuroscience

, Volume 60, Issue 3, pp 325–335 | Cite as

The Complex Role of Apolipoprotein E in Alzheimer’s Disease: an Overview and Update

  • Laura Mahoney-Sanchez
  • Abdel Ali Belaidi
  • Ashley I. Bush
  • Scott AytonEmail author
Article

Abstract

Apolipoprotein E (ApoE) plays a crucial role in the homeostatic control of lipids in both the periphery and the central nervous system (CNS). In humans, ApoE exists in three different isoforms: ε2, ε3 and ε4. ApoE ε3 is the most common isoform, while the ε4 isoform confers the greatest genetic risk for Alzheimer’s disease (AD). However, the mechanisms underlying how ApoE contributes to the pathogenesis of AD are still debated. ApoE has been shown to impact amyloid β (Aβ) deposition and clearance in the brain. ApoE also has Aβ-independent pathways in AD, which has led to the discovery of new roles of ApoE ranging from mitochondria dysfunction to, most recently, iron metabolism. Here, we review the role of ApoE in health and in AD, with the view of identifying therapeutic approaches that could prevent the risk associated with the ε4 isoform.

Keywords

Alzheimer’s disease Apolipoprotein E ε4 Neurodegeneration Iron 

Notes

Acknowledgments

The study was supported by Australian National Health and Medical Research Council (NHMRC) and the Australian Research Council (ARC). The Florey Institute of Neuroscience and Mental Health acknowledges support from the Victorian Government, in particular funding from the Operational Infrastructure Support Grant.

References

  1. Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide β (1–40). Relevance to Alzheimer's Disease Biochemistry 36:10571–10580. doi: 10.1021/bi9626362 PubMedGoogle Scholar
  2. Andrási E, Farkas É, Scheibler H, Réffy A, Bezúr L (1995) Al, Zn, Cu, Mn and Fe levels in brain in Alzheimer's disease. Arch Gerontol Geriatr 21:89–97. doi: 10.1016/0167-4943(95)00643-Y PubMedCrossRefGoogle Scholar
  3. Antharam V et al (2012) High field magnetic resonance microscopy of the human hippocampus in Alzheimer’s disease: quantitative imaging and correlation with iron. NeuroImage 59:1249–1260. doi: 10.1016/j.neuroimage.2011.08.019 PubMedCrossRefGoogle Scholar
  4. Ayton S, Faux NG, Bush AI (2015a) Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE nature communications. 6:6760. doi: 10.1038/ncomms7760
  5. Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer's disease. Free Radic Biol Med 62:76–89. doi: 10.1016/j.freeradbiomed.2012.10.558 PubMedCrossRefGoogle Scholar
  6. Ayton S, Lei P, Bush AI (2015b) Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics 12:109–120. doi: 10.1007/s13311-014-0312-z PubMedCrossRefGoogle Scholar
  7. Ayton S et al (2014) Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med 69:331–337. doi: 10.1016/j.freeradbiomed.2014.01.041 PubMedCrossRefGoogle Scholar
  8. Ayton S et al (2015c) Parkinson's disease iron deposition caused by nitric oxide-induced loss of β-amyloid precursor protein. J Neurosci 35:3591–3597. doi: 10.1523/jneurosci.3439-14.2015 PubMedCrossRefGoogle Scholar
  9. Bachmeier C, Paris D, Beaulieu-Abdelahad D, Mouzon B, Mullan M, Crawford F (2013) A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier. Neurodegener Dis 11:13–21PubMedCrossRefGoogle Scholar
  10. Bales KR, Du Y, Holtzman D, Cordell B, Paul SM (2000) Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Aβ-induced glial activation, NF-κB, and apolipoprotein E. Neurobiol Aging 21:427–432. doi: 10.1016/S0197-4580(00)00143-3 PubMedCrossRefGoogle Scholar
  11. Bales KR et al (1997) Lack of apolipoprotein E dramatically reduces amyloid [beta]-peptide deposition. Nat Genet 17:263–264PubMedCrossRefGoogle Scholar
  12. Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672PubMedCrossRefGoogle Scholar
  13. Barger SW, Harmon AD (1997) ) microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein. E Nature 388:878–881CrossRefGoogle Scholar
  14. Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 287:13959–13971. doi: 10.1074/jbc.M111.288746 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem . doi: 10.1111/jnc.13425n/a-n/aGoogle Scholar
  16. Bodovitz S, Falduto MT, Frail DE, Klein WL (1995) Iron levels modulate α-Secretase cleavage of amyloid precursor protein. J Neurochem 64:307–315. doi: 10.1046/j.1471-4159.1995.64010307.x PubMedCrossRefGoogle Scholar
  17. Bour A et al (2008) Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 193:174–182. doi: 10.1016/j.bbr.2008.05.008 PubMedCrossRefGoogle Scholar
  18. Brecht WJ et al (2004) Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24:2527–2534. doi: 10.1523/jneurosci.4315-03.2004 PubMedCrossRefGoogle Scholar
  19. Brodbeck J, Balestra ME, Saunders AM, Roses AD, Mahley RW, Huang Y (2008) Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. Proc Natl Acad Sci U S A 105:1343–1346. doi: 10.1073/pnas.0709906104 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brodbeck J et al (2011) Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J Biol Chem 286:17217–17226. doi: 10.1074/jbc.M110.217380 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Castellano JM et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3(89):89ra57. doi: 10.1126/scitranslmed.3002156 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chang S, Ma T, Miranda RD, Balestra ME, Mahley RW, Huang Y (2005) Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A 102:18694–18699. doi: 10.1073/pnas.0508254102 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen H-K et al (2011a) Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J Biol Chem 286:5215–5221. doi: 10.1074/jbc.M110.151084 PubMedCrossRefGoogle Scholar
  24. Chen J, Li Q, Wang J (2011b) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci U S A 108:14813–14818. doi: 10.1073/pnas.1106420108 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colca JR, Feinstein DL (2012) Altering mitochondrial dysfunction as an approach to treating Alzheimer’s disease. In: Elias KM, Mary LM (eds) Advances in pharmacology, vol 64. Academic Press, pp. 155–176. doi: 10.1016/B978-0-12-394816-8.00005-2
  26. Colton CA et al (2004) APOE genotype-specific differences in human and mouse macrophage nitric oxide production. J Neuroimmunol 147:62–67. doi: 10.1016/j.jneuroim.2003.10.015 PubMedCrossRefGoogle Scholar
  27. Conejero-Goldberg C et al (2011) Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer’s disease as based on APOE genotype. Mol Psychiatry 16:836–847. doi: 10.1038/mp.2010.57 PubMedCrossRefGoogle Scholar
  28. Connor JR, Menzies SL, St. Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res 31:75–83. doi: 10.1002/jnr.490310111 PubMedCrossRefGoogle Scholar
  29. Corder E et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923. doi: 10.1126/science.8346443 PubMedCrossRefGoogle Scholar
  30. Corder EH et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184PubMedCrossRefGoogle Scholar
  31. Cruchaga C et al (2012) Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease. Hum Mol Genet 21:4558–4571. doi: 10.1093/hmg/dds296 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37–37. doi: 10.1186/alzrt269 PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Chaves EP, Narayanaswami V (2008) Apolipoprotein E and cholesterol in aging and disease in the brain. Futur Lipidol 3:505–530CrossRefGoogle Scholar
  34. Di Paolo G, Kim T-W (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond nature reviews. Neuroscience 12:284–296. doi: 10.1038/nrn3012 PubMedPubMedCentralGoogle Scholar
  35. Dong L-M, Weisgraber KH (1996) Human apolipoprotein E4 domain interaction: arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 271:19053–19057. doi: 10.1074/jbc.271.32.19053 PubMedCrossRefGoogle Scholar
  36. Fagan AM et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519. doi: 10.1002/ana.20730 PubMedCrossRefGoogle Scholar
  37. Farrer LA, Cupples L, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein e genotype and alzheimer disease: a meta-analysis. JAMA 278:1349–1356. doi: 10.1001/jama.1997.03550160069041 PubMedCrossRefGoogle Scholar
  38. Genin E et al (2011) Apoe and Alzheimer disease: a major Gene with semi-dominant inheritance. Mol Psychiatry 16:903–907. doi: 10.1038/mp.2011.52 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gibson GE et al (2000) Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. Ann Neurol 48:297–303. doi: 10.1002/1531-8249(200009)48:3<297::aid-ana3>3.0.co;2-z PubMedCrossRefGoogle Scholar
  40. Goate A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–706PubMedCrossRefGoogle Scholar
  41. Hansen TM, Nielsen H, Bernth N, Moos T (1999) Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain. Mol Brain Res 65:186–197. doi: 10.1016/S0169-328X(99)00011-X PubMedCrossRefGoogle Scholar
  42. Hardy J, Higgins G (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–185. doi: 10.1126/science.1566067 PubMedCrossRefGoogle Scholar
  43. Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain Frontiers in aging. Neuroscience 5:34. doi: 10.3389/fnagi.2013.00034 Google Scholar
  44. Harris FM et al (2003) Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A 100:10966–10971. doi: 10.1073/pnas.1434398100 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y (2004) Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: MODULATION BY ZINC. J Biol Chem 279:44795–44801. doi: 10.1074/jbc.M408127200 PubMedCrossRefGoogle Scholar
  46. Hatters DM, Peters-Libeu CA, Weisgraber KH (2006) Apolipoprotein E structure: insights into function. Trends Biochem Sci 31:445–454. doi: 10.1016/j.tibs.2006.06.008 PubMedCrossRefGoogle Scholar
  47. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele. PLoS One 7:e41636. doi: 10.1371/journal.pone.0041636 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hoe H-S, Freeman J, Rebeck GW (2006) Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Mol Neurodegener 1:18–18. doi: 10.1186/1750-1326-1-18 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 97:2892–2897. doi: 10.1073/pnas.050004797 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huang Y, Mahley RW (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 72(Pt A):3–12. doi: 10.1016/j.nbd.2014.08.025 PubMedCrossRefGoogle Scholar
  51. Huang Y (2010) Aβ-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol Med 16:287–294. doi: 10.1016/j.molmed.2010.04.004 PubMedCrossRefGoogle Scholar
  52. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW (2001) Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A 98:8838–8843. doi: 10.1073/pnas.151254698 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jiang Q et al (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693. doi: 10.1016/j.neuron.2008.04.010 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Keene CD, Cudaback E, Li X, Montine KS, Montine TJ (2011) Apolipoprotein E isoforms and regulation of the innate immune response in brain of patients with Alzheimer’s disease. Curr Opin Neurobiol 21:920–928. doi: 10.1016/j.conb.2011.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim J et al (2011) Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-beta amyloidosis. J Neurosci Off J Soc Neurosci 31:18007–18012. doi: 10.1523/JNEUROSCI.3773-11.2011 CrossRefGoogle Scholar
  56. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer's disease. Neuron 63:287–303. doi: 10.1016/j.neuron.2009.06.026 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kuiper MA, Mulder C, van Kamp GJ, Scheltens P, Wolters EC (1994) Cerebrospinal fluid ferritin levels of patients with Parkinson's disease, Alzheimer's disease, and multiple system atrophy. Journal of Neural Transmission - Parkinson's Disease and Dementia Section 7:109–114. doi: 10.1007/bf02260965 PubMedCrossRefGoogle Scholar
  58. LaDu MJ et al (2001) Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochem Int 39:427–434. doi: 10.1016/S0197-0186(01)00050-X PubMedCrossRefGoogle Scholar
  59. LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269:23403–23406PubMedGoogle Scholar
  60. Lee CY, Tse W, Smith JD, Landreth GE (2012a) Apolipoprotein E promotes beta-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287:2032–2044. doi: 10.1074/jbc.M111.295451 PubMedCrossRefGoogle Scholar
  61. Lee CYD, Tse W, Smith JD, Landreth GE (2012b) Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287:2032–2044. doi: 10.1074/jbc.M111.295451 PubMedCrossRefGoogle Scholar
  62. Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA, Finkelstein DI, Bush AI (2015) Clioquinol rescues parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol Dis 81:168–175. doi: 10.1016/j.nbd.2015.03.015 PubMedCrossRefGoogle Scholar
  63. Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI, Bush AI (2014) Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener 9:29–29. doi: 10.1186/1750-1326-9-29 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lei P et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18:291–295 doi:http://www.nature.com/nm/journal/v18/n2/abs/nm.2613.html#supplementary-informationPubMedCrossRefGoogle Scholar
  65. Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, Bu G (2012) Differential regulation of amyloid-β Endocytic trafficking and Lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 287:44593–44601. doi: 10.1074/jbc.M112.420224 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li X et al (2015) Enduring elevations of hippocampal amyloid precursor protein and iron are features of β-amyloid toxicity and are mediated by tau. Neurotherapeutics 12:862–873. doi: 10.1007/s13311-015-0378-2 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liang WS et al (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 105:4441–4446. doi: 10.1073/pnas.0709259105 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy nature reviews. Neurology 9:106–118. doi: 10.1038/nrneurol.2012.263 PubMedPubMedCentralGoogle Scholar
  69. Mahley R (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630. doi: 10.1126/science.3283935 PubMedCrossRefGoogle Scholar
  70. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transporter protein. Annu Rev Genomics Hum Genet 01:507–537Google Scholar
  71. Mahley RW (2016) Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.116.307023 PubMedPubMedCentralGoogle Scholar
  72. Mahley RW, Huang Y (2012a) Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76:871–885. doi: 10.1016/j.neuron.2012.11.020 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mahley RW, Huang Y (2012b) ) small-molecule structure correctors target abnormal protein structure and function: structure corrector rescue of apolipoprotein E4–associated neuropathology. J Med Chem 55:8997–9008. doi: 10.1021/jm3008618 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 2:a006262. doi: 10.1101/cshperspect.a006262 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Morrow JA, Hatters DM, Lu B, Höchtl P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule: a potential basis for its association with disease. J Biol Chem 277:50380–50385. doi: 10.1074/jbc.M204898200 PubMedCrossRefGoogle Scholar
  76. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of [beta]-amyloid. Nat Genet 1:345–347PubMedCrossRefGoogle Scholar
  77. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci:800–806. doi: 10.1038/nn.4018
  78. Nakamura T, Watanabe A, Fujino T, Hosono T, Michikawa M (2009) Apolipoprotein E4 (1–272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells. Mol Neurodegener 4:35–35. doi: 10.1186/1750-1326-4-35 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–166. doi: 10.1016/0006-8993(91)91092-F PubMedCrossRefGoogle Scholar
  80. Neuroinflammation Working G et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421CrossRefGoogle Scholar
  81. Raber J, Wong D, Yu G-Q, Buttini M, Mahley RW, Pitas RE, Mucke L (2000) Alzheimer's disease: apolipoprotein E and cognitive performance. Nature 404:352–354PubMedCrossRefGoogle Scholar
  82. Raffaï RL, Dong L-M, Farese RV, Weisgraber KH (2001) Introduction of human apolipoprotein E4 “domain interaction” into mouse apolipoprotein E. Proc Natl Acad Sci U S A 98:11587–11591. doi: 10.1073/pnas.201279298 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ramaswamy G, Xu Q, Huang Y, Weisgraber KH (2005) Effect of domain interaction on apolipoprotein E levels in mouse brain. J Neurosci 25:10658–10663. doi: 10.1523/jneurosci.1922-05.2005 PubMedCrossRefGoogle Scholar
  84. Rapp A, Gmeiner B, Huttinger M (2006) Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88:473–483. doi: 10.1016/j.biochi.2005.10.007 PubMedCrossRefGoogle Scholar
  85. Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2015) Plasma levels of apolipoprotein E and risk of dementia in the general population. Ann Neurol 77:301–311. doi: 10.1002/ana.24326 PubMedCrossRefGoogle Scholar
  86. Reiman EM et al (2005) Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci U S A 102:8299–8302. doi: 10.1073/pnas.0500579102 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Reiman EM et al (2009) Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 106:6820–6825. doi: 10.1073/pnas.0900345106 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Riddell DR et al (2008) Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci Off J Soc Neurosci 28:11445–11453. doi: 10.1523/JNEUROSCI.1972-08.2008 CrossRefGoogle Scholar
  89. Ringman JM et al (2012) Plasma signaling proteins in persons at genetic risk for Alzheimer disease: influence of APOE genotype. Arch Neurol 69:757–764. doi: 10.1001/archneurol.2012.277 PubMedPubMedCentralGoogle Scholar
  90. Rival T et al (2009) Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a drosophila model of Alzheimer’s disease. Eur J Neurosci 29:1335–1347. doi: 10.1111/j.1460-9568.2009.06701.x PubMedPubMedCentralCrossRefGoogle Scholar
  91. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annual Reviews Medicine 47:387–400CrossRefGoogle Scholar
  92. Rottkamp CA et al (2001) Redox-active iron mediates amyloid-β toxicity. Free Radic Biol Med 30:447–450. doi: 10.1016/S0891-5849(00)00494-9 PubMedCrossRefGoogle Scholar
  93. Saavedra L, Mohamed A, Ma V, Kar S, de Chaves EP (2007) Internalization of β-amyloid peptide by primary neurons in the absence of apolipoprotein E. J Biol Chem 282:35722–35732. doi: 10.1074/jbc.M701823200 PubMedCrossRefGoogle Scholar
  94. Sanan DA et al (1994) Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Investig 94:860–869PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schneider WJ et al (1981) Familial dysbetalipoproteinemia. Abnormal binding of mutant apoprotein E to low density lipoprotein receptors of human fibroblasts and membranes from liver and adrenal of rats, rabbits, and cows. J Clin Investig 68:1075–1085PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 569:29–63. doi: 10.1016/j.mrfmmm.2004.06.056 PubMedCrossRefGoogle Scholar
  97. Small GW, Mazziotta JC, Collins MT et al (1995) APolipoprotein e type 4 allele and cerebral glucose metabolism in relatives at risk for familial alzheimer disease. JAMA 273:942–947. doi: 10.1001/jama.1995.03520360056039 PubMedCrossRefGoogle Scholar
  98. Small GW et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci 97:6037–6042. doi: 10.1073/pnas.090106797 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Smith MA, Harris PLR, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868PubMedPubMedCentralCrossRefGoogle Scholar
  100. Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE varepsilon2. Neurosci Biobehav Rev 37:2878–2886. doi: 10.1016/j.neubiorev.2013.10.010 PubMedCrossRefGoogle Scholar
  101. Szekely CA, Breitner JCS, Fitzpatrick AL, Rea TD, Psaty BM, Kuller LH, Zandi PP (2008) NSAID use and dementia risk in the cardiovascular health study: role of APOE and NSAID type. Neurology 70:17–24. doi: 10.1212/01.wnl.0000284596.95156.48 PubMedCrossRefGoogle Scholar
  102. Tapiola T, Alafuzoff I, Herukka S et al (2009) CErebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389. doi: 10.1001/archneurol.2008.596 PubMedCrossRefGoogle Scholar
  103. Tesseur I, Van Dorpe J, Bruynseels K, Bronfman F, Sciot R, Van Lommel A, Van Leuven F (2000b) Prominent Axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol 157:1495–1510PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D, Van Leuven F (2000a) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 156:951–964PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tokuda T et al (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid beta peptides. Biochem J 348:359–365PubMedPubMedCentralGoogle Scholar
  106. Toledo JB et al (2014) CSF Apo-E levels associate with cognitive decline and MRI changes. Acta Neuropathol 127:621–632. doi: 10.1007/s00401-013-1236-0 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Verghese PB et al (2013) ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc Natl Acad Sci U S A 110:E1807–E1816. doi: 10.1073/pnas.1220484110 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 103:405–413. doi: 10.1093/cvr/cvu148 PubMedCrossRefGoogle Scholar
  109. Vitek MP, Brown CM, Colton CA (2009) APOE genotype-specific differences in the innate immune response. Neurobiol Aging 30:1350–1360. doi: 10.1016/j.neurobiolaging.2007.11.014 PubMedCrossRefGoogle Scholar
  110. Weggen S, Beher D (2012) Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. Alzheimers Res Ther 4:9–9. doi: 10.1186/alzrt107 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weisgraber KH, Innerarity TL, Mahley RW (1982) Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem 257:2518–2521PubMedGoogle Scholar
  112. Wilson C, Wardell M, Weisgraber K, Mahley R, Agard D (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822. doi: 10.1126/science.2063194 PubMedCrossRefGoogle Scholar
  113. Xu H et al (2015) Zinc affects the proteolytic stability of apolipoprotein E in an isoform-dependent way. Neurobiol Dis 81:38–48. doi: 10.1016/j.nbd.2015.06.016 PubMedCrossRefGoogle Scholar
  114. Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein Gene to the ApoE locus. J Neurosci 26:4985–4994. doi: 10.1523/jneurosci.5476-05.2006 PubMedCrossRefGoogle Scholar
  115. Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA (2016) Iron regulates apolipoprotein E expression and secretion in neurons and astrocytes. Journal of Alzheimer's disease: JAD 51:471–487PubMedCrossRefGoogle Scholar
  116. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer's disease: an update. Annu Rev Neurosci 37:79–100. doi: 10.1146/annurev-neuro-071013-014300 PubMedCrossRefGoogle Scholar
  117. Zhong N, Weisgraber KH (2009) Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. J Biol Chem 284:6027–6031. doi: 10.1074/jbc.R800009200 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhong N, Ramaswamy G, Weisgraber KH (2009) Apolipoprotein E4 domain interaction induces endoplasmic reticulum stress and impairs astrocyte function. J Biol Chem 284:27273–27280. doi: 10.1074/jbc.M109.014464 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH (2008) Apolipoprotein E4 domain interaction: synaptic and cognitive deficits in mice Alzheimer's & dementia. The journal of the Alzheimer's Association 4:179–192. doi: 10.1016/j.jalz.2008.01.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The Florey Institute for Neuroscience and Mental HealthThe University of MelbourneParkvilleAustralia

Personalised recommendations