Journal of Molecular Neuroscience

, Volume 60, Issue 2, pp 157–170 | Cite as

Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release

  • Zsófia Hajna
  • Éva Sághy
  • Maja Payrits
  • Aisah A. Aubdool
  • Éva Szőke
  • Gábor Pozsgai
  • István Z. Bátai
  • Lívia Nagy
  • Dániel Filotás
  • Zsuzsanna Helyes
  • Susan D. Brain
  • Erika PintérEmail author


It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca2+]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca2+]i was measured with ratiometric technique on TRG neurons of TRPA1+/+ and TRPA1−/− mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K+ ATP channel blocker glibenclamide. Alpha-CGRP−/− and NK1 −/− mice were also investigated. NaHS and Na2S increased [Ca2+]i in TRG neurons derived from TRPA+/+ but not from TRPA1−/− mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP−/− or NK1 −/− mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.


Capsaicin-sensitive sensory neuron CGRP Hydrogen sulphide Substance P TRPA1 receptor 





calcitonin gene-related peptide


Chinese hamster ovary


counts per minute


dorsal root ganglion


hydrogen sulphide


neurokinin 1


neurokinin 2


nitric oxide






substance P


Transient Receptor Potential Ankyrin 1


Transient Receptor Potential Vanilloid 1


trigeminal ganglion



The present scientific work is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

This study was supported by Hungarian Research Grant “OTKA NN-114458”, by the Hungarian Brain Research Program and National Development Agency KTIA_NAP_13-1-2013-0001, and MTA-PTE NAP B Chronic Pain Research Group, 888819. E. Pintér was supported by János Szentágothai Scholarship (A2-SZJÖ-TOK-13-0149) of the Hungarian National Excellence Program TÁMOP-4.2.4. A/2-11-1-2012-0001. A. A. Aubdool is supported by the British Heart Foundation PG/12/34/29557. É. Sághy and M. Payrits were supported by Gedeon Richter's Talentum Foundation.

The authors are grateful to Dr. Kata Bölcskei for editing Figs. 4, 5 and 6. The authors also thank to Nikolett Szentes and Teréz Bagoly for their professional technical assistance.

Authors’ Contributions

Z. Hajna, É. Szőke, G. Pozsgai, L. Nagy, Z. Helyes, S.D. Brain and E. Pintér contributed to the conception and design of research; Z. Hajna, É. Sághy, M. Payrits, A.A. Aubdool, G. Pozsgai, I.Z. Bátai, L. Nagy and D. Filotás performed the experiments and analysed the data; Z. Hajna, A.A. Aubdool, É. Szőke, G. Pozsgai, L. Nagy, Z. Helyes, S.D. Brain and E. Pintér interpreted the results of experiments; Z. Hajna, É. Sághy, M. Payrits, A.A. Aubdool prepared the figures; Z. Hajna, É. Sághy, M. Payrits and E. Pintér drafted the manuscript; Z. Hajna, A.A. Aubdool, É. Szőke, G. Pozsgai, Z. Helyes, S.D. Brain and E. Pintér edited and revised the manuscript; E. Pintér approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Andersson DA, Gentry C, Bevan S (2012) TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 7:e46917CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, Bevan S, Brain SD (2014) TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun 5:5732CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 23:1102–1114CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK (2006) Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am J Physiol Lung Cell Mol Physiol 291:L896–L904CrossRefPubMedGoogle Scholar
  6. Bhatia M (2010) Hydrogen sulfide and substance P in inflammation. Antioxid Redox Signal 12:1191–1202CrossRefPubMedGoogle Scholar
  7. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56CrossRefPubMedGoogle Scholar
  8. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:H2316–H2323CrossRefPubMedGoogle Scholar
  9. De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397CrossRefPubMedGoogle Scholar
  10. Dux M, Will C, Vogler B, Filipovic MR, Messlinger K (2016) Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 173:431–445CrossRefPubMedGoogle Scholar
  11. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-activated K+ channels. Circ Res 104:987–994CrossRefPubMedPubMedCentralGoogle Scholar
  12. Earley S (2012) TRPA1 channels in the vasculature. Br J Pharmacol 167:13–22CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elekes K, Helyes Z, Németh J, Sándor K, Pozsgai G, Kereskai L, Börzsei R, Pintér E, Szabó A, Szolcsányi J (2007) Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept 141:44–54CrossRefPubMedGoogle Scholar
  15. Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166:510–521CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fernandes VS, Ribeiro AS, Barahona MV, Orensanz LM, Martínez-Sáenz A, Recio P, Martínez AC, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M (2013) Hydrogen sulfide mediated inhibitory neurotransmission to the pig bladder neck: role of K+ ATP channels, sensory nerves and calcium signalling. J Urol 190:746–756CrossRefPubMedGoogle Scholar
  17. Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M (2008) Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest 118:4049–4057CrossRefPubMedPubMedCentralGoogle Scholar
  18. Graepel R, Fernandes ES, Aubdool AA, Andersson DA, Bevan S, Brain SD (2011) 4-oxo-2-nonenal (4-ONE): evidence of transient receptor potential ankyrin 1-dependent and -independent nociceptive and vasoactive responses in vivo. J Pharmacol Exp Ther 337:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grant AD, Pinter E, Salmon AM, Brain SD (2005) An examination of neurogenic mechanisms involved in mustard oil-induced inflammation in the mouse. Eur J Pharmacol 507:273–280CrossRefPubMedGoogle Scholar
  20. Greiner R, Pálinkás Z, Bäsell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T (2015) Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 11:24CrossRefPubMedPubMedCentralGoogle Scholar
  22. Helyes Z, Szabó A, Németh J, Jakab B, Pintér E, Bánvölgyi A, Kereskai L, Kéri G, Szolcsányi J (2004) Antiinflammatory and analgesic effects of somatostatin released from capsaicin-sensitive sensory nerve terminals in a Freund’s adjuvant-induced chronic arthritis model in the rat. Arthritis Rheum 50:1677–1685CrossRefPubMedGoogle Scholar
  23. Hirsch S, Corradini L, Just S, Arndt K, Doods H (2013) The CGRP receptor antagonist BIBN4096BS peripherally alleviates inflammatory pain in rats. Pain 154:700–707CrossRefPubMedGoogle Scholar
  24. Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768CrossRefPubMedGoogle Scholar
  25. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265CrossRefPubMedGoogle Scholar
  26. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10CrossRefPubMedGoogle Scholar
  28. Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457CrossRefPubMedGoogle Scholar
  29. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH (2011) TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 152:38–44CrossRefPubMedGoogle Scholar
  30. Laird JM, Olivar T, Roza C, De Felipe C, Hunt SP, Cervero F (2000) Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 98:345–352CrossRefPubMedGoogle Scholar
  31. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signalling. Annu Rev Pharmacol Toxicol 51:169–187CrossRefPubMedGoogle Scholar
  32. Liang GH, Adebiyi A, Leo MD, McNally EM, Leffler CW, Jaggar JH (2011) Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane K+ ATP channels. Am J Physiol Heart Circ Physiol 300:H2088–H2095CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185CrossRefPubMedGoogle Scholar
  34. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545CrossRefPubMedGoogle Scholar
  35. Maggi CA, Giuliani S, Santicioli P, Brading AF (1996) Role of intracellular Ca2+ in the K channel opener action of CGRP in the guinea-pig ureter. Br J Pharmacol 118:1493–1503CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43CrossRefPubMedGoogle Scholar
  37. McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160:1573–1576CrossRefPubMedPubMedCentralGoogle Scholar
  38. McLean S, Ganong A, Seymour PA, Snider RM, Desai MC, Rosen T, Bryce DK, Longo KP, Reynolds LS, Robinson G, Schmidt AW, Siok C, Heym J (1993) Pharmacology of CP-99, 994; a nonpeptide antagonist of the tachykinin neurokinin-1 receptor. J Pharmacol Exp Ther 267:472–479PubMedGoogle Scholar
  39. Miyamoto R, Otsuguro K, Ito S (2011) Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons. Neurosci Lett 499:137–142CrossRefPubMedGoogle Scholar
  40. Mustafa AK, Gadalla MM, Snyder SH (2009) Signaling by gasotransmitters. Sci Signal 2:re2PubMedPubMedCentralGoogle Scholar
  41. Nagy L, Filotás D, Boros M, Pozsgai G, Pintér E, Nagy G (2014) Amperometric cell for subcutaneous detection of hydrogen sulfide in anesthetized experimental animals. Physiol Meas 35:2475–2487CrossRefPubMedGoogle Scholar
  42. Németh J, Reglődi D, Pozsgai G, Szabó Á, Elekes K, Pintér E, Szolcsányi J, Helyes Z (2006) Effect of pituitary adenylate cyclase activating polypeptide-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience 143:223–230CrossRefPubMedGoogle Scholar
  43. Nesuashvili L, Hadley SH, Bahia PK, Taylor-Clark TE (2013) Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol Pharmacol 83:1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ogawa H, Takahashi K, Miura S, Imagawa T, Saito S, Tominaga M, Ohta T (2012) H2S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation. Neuroscience 218:335–343CrossRefPubMedGoogle Scholar
  45. Patacchini R, Santicioli P, Giuliani S, Maggi CA (2004) Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol 142:31–34CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pintér E, Helyes Z, Szolcsányi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112:440–456CrossRefPubMedGoogle Scholar
  47. Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD (2010) Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res 87:760–768CrossRefPubMedGoogle Scholar
  48. Pozsgai G, Hajna Z, Bagoly T, Boros M, Kemény Á, Materazzi S, Nassini R, Helyes Z, Szolcsányi J, Pintér E (2012) The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation. Eur J Pharmacol 689:56–64CrossRefPubMedGoogle Scholar
  49. Prior M, Green F, Lopez A, Balu A, De Sanctis GT, Fick G (1990) Capsaicin pretreatment modifies hydrogen sulphide-induced pulmonary injury in rats. Toxicol Pathol 18:279–288CrossRefPubMedGoogle Scholar
  50. Qian X, Francis M, Solodushko V, Earley S, Taylor MS (2013) Recruitment of dynamic endothelial Ca2+ signals by the TRPA1 channel activator AITC in rat cerebral arteries. Microcirculation 20:138–148CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rupniak NM, Webb JK, Williams AR, Carlson E, Boyce S, Hill RG (1995) Antinociceptive activity of the tachykinin NK1 receptor antagonist, CP-99, 994, in conscious gerbils. Br J Pharmacol 116:1937–1943CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sághy É, Szőke É, Payrits M, Helyes Z, Börzsei R, Erostyák J, Jánosi TZ, Sétáló G Jr, Szolcsányi J (2015) Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacol Res 100:101–116CrossRefPubMedGoogle Scholar
  53. Salmon AM, Damaj I, Sekine S, Picciotto MR, Marubio L, Changeux JP (1999) Modulation of morphine analgesia in alpha CGRP mutant mice. Neuroreport 10:849–854CrossRefPubMedGoogle Scholar
  54. Santicioli P, Maggi CA (1994) Inhibitory transmitter action of calcitonin gene-related peptide in guinea-pig ureter via activation of glibenclamide-sensitive K channels. Br J Pharmacol 113:588–592CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch 459:389–397CrossRefPubMedGoogle Scholar
  56. Smillie SJ, King R, Kodji X, Outzen E, Pozsgai G, Fernandes E, Marshall N, de Winter P, Heads RJ, Dessapt-Baradez C, Gnudi L, Sams A, Shah AM, Siow RC, Brain SD (2014) An ongoing role of α-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension 63:1056–1062CrossRefPubMedGoogle Scholar
  57. Starr A, Graepel R, Keeble J, Schmidhuber S, Clark N, Grant A, Shah AM, Brain SD (2008) A reactive oxygen species-mediated component in neurogenic vasodilatation. Cardiovasc Res 78:139–147CrossRefPubMedGoogle Scholar
  58. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829CrossRefPubMedGoogle Scholar
  59. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399CrossRefPubMedGoogle Scholar
  60. Szabó C, Papapetropoulos A (2011) Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 164:853–865CrossRefPubMedPubMedCentralGoogle Scholar
  61. Szolcsanyi J, Szallasi A, Szallasi Z, Joo F, Blumberg PM (1990) Resiniferatoxin: an ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J Pharmacol Exp Ther 255:923–928PubMedGoogle Scholar
  62. Szolcsányi J (1996) Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism. Prog Brain Res 113:343–359CrossRefPubMedGoogle Scholar
  63. Szőke E, Börzsei R, Tóth DM, Lengl O, Helyes Z, Sándor Z, Szolcsányi J (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628:67–74CrossRefPubMedGoogle Scholar
  64. Takahashi N, Kozai D, Mori Y (2012) TRP channels: sensors and transducers of gasotransmitter signals. Front Physiol 3:324CrossRefPubMedPubMedCentralGoogle Scholar
  65. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459CrossRefPubMedPubMedCentralGoogle Scholar
  66. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One 5:e12177CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang L, Cvetkov TL, Chance MR, Moiseenkova-Bell VY (2012) Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287:6169–6176CrossRefPubMedGoogle Scholar
  69. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896CrossRefPubMedGoogle Scholar
  70. White BJ, Smith PA, Dunn WR (2013) Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats. Br J Pharmacol 168:785–793CrossRefPubMedPubMedCentralGoogle Scholar
  71. Whiteman M, Moore PK (2009) Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13:488–507CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wild V, Messlinger K, Fischer MJ (2015) Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents. Neurosci Lett 602:104–109CrossRefPubMedGoogle Scholar
  73. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous K (ATP) channel opener. EMBO J 20:6008–6016CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zsófia Hajna
    • 1
    • 2
  • Éva Sághy
    • 1
    • 2
  • Maja Payrits
    • 1
    • 2
  • Aisah A. Aubdool
    • 4
  • Éva Szőke
    • 1
    • 2
    • 3
  • Gábor Pozsgai
    • 1
    • 2
  • István Z. Bátai
    • 1
    • 2
  • Lívia Nagy
    • 2
  • Dániel Filotás
    • 5
  • Zsuzsanna Helyes
    • 1
    • 2
    • 3
  • Susan D. Brain
    • 4
  • Erika Pintér
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of PécsPécsHungary
  2. 2.János Szentágothai Research CentreUniversity of PécsPécsHungary
  3. 3.MTA-PTE NAP B Chronic Pain Research GroupPécsHungary
  4. 4.BHF Cardiovascular Centre of Excellence and Centre of Integrative BiomedicineKing’s College LondonLondonUK
  5. 5.Department of General and Physical Chemistry, Faculty of SciencesUniversity of PécsPécsHungary

Personalised recommendations