Journal of Molecular Neuroscience

, Volume 60, Issue 2, pp 223–231 | Cite as

Down-Regulated Expression of Liver X Receptor beta in Cortical Lesions of Patients with Focal Cortical Dysplasia

  • Xin Chen
  • Lukang Wang
  • Bing Chen
  • Jiong Yue
  • Gang Zhu
  • Chunqing Zhang
  • Shiyong Liu
  • Hui YangEmail author


Focal cortical dysplasia (FCD) is strongly associated with medically intractable epilepsy. Studies suggest that liver X receptor beta (LXRβ) may participate in the pathogenesis of FCD. The present study investigated the expression pattern of LXRβ in FCD and the distribution of LXRβ in different neural precursor cells. Twenty-five surgical specimens from FCD patients and 11 age-matched control samples from autopsies were included in our study. Protein levels and distribution were detected by western blot, immunohistochemistry, and immunofluorescence staining. We found that (1) the level of LXRβ protein was markedly reduced in FCD. (2) LXRβ staining was weaker in the dysplastic cortices of FCD and was mainly observed in neuronal microcolumns, and malformed cells. (3) LXRβ was co-localized with radial glial cells (RGCs) markers and oligodendrocyte precursor cells (OPCs) markers in malformed cells. (4) RGCs marker and OPCs marker were down-regulated while LXRβ downstream factors were up-regulated in FCD specimens. Taken together, our results indicate that LXRβ may interact with β-catenin to regulate the generation of OPCs and the transformation of RGCs. LXRβ therefore potentially contributes to the pathogenesis of FCD.


LXRβ Focal cortical dysplasia Radial glial cell Oligodendrocyte precursor cell 



The investigators would like to thank the technicians Jin Peng, Qian Chen, and Wen-Qiang Cai (Central Laboratory of Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China), for their excellent assistance with the laser scanning confocal microscopy. This study was supported by National Natural Science Foundation of China (No. 81271436 and No. 81370028).

Compliance with ethical standards

Conflict of Interest

The authors declare that they no conflict of interest.

Supplementary material

12031_2016_795_MOESM1_ESM.doc (48 kb)
ESM 1 (DOC 47 kb)


  1. Abdijadid S, Mathern GW, Levine MS, Cepeda C (2015) Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 21:92–103. doi: 10.1111/cns.12345 CrossRefPubMedGoogle Scholar
  2. Alonso-Nanclares L, Garbelli R, Sola RG, Pastor J, Tassi L, Spreafico R, DeFelipe J (2005) Microanatomy of the dysplastic neocortex from epileptic patients. Brain 128:158–173. doi: 10.1093/brain/awh331 CrossRefPubMedGoogle Scholar
  3. Andre VM et al (2007) Cytomegalic interneurons: a new abnormal cell type in severe pediatric cortical dysplasia. J Neuropathol Exp Neurol 66:491–504. doi: 10.1097/01.jnen.0000240473.50661.d8 CrossRefPubMedGoogle Scholar
  4. Annicotte JS, Schoonjans K, Auwerx J (2004) Expression of the liver X receptor alpha and beta in embryonic and adult mice. Anat Rec A: Discov Mol Cell Evol Biol 277:312–316. doi: 10.1002/ar.a.20015 CrossRefGoogle Scholar
  5. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815. doi: 10.1161/01.ATV.0000120374.59826.1b CrossRefPubMedGoogle Scholar
  6. Blumcke I et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174. doi: 10.1111/j.1528-1167.2010.02777.x CrossRefPubMedGoogle Scholar
  7. Cepeda C, Andre VM, Levine MS, Salamon N, Miyata H, Vinters HV, Mathern GW (2006) Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav E&B 9:219–235. doi: 10.1016/j.yebeh.2006.05.012 CrossRefGoogle Scholar
  8. Chen X et al (2016) Increased expression of transient receptor potential vanilloid 4 in Cortical lesions of patients with focal cortical dysplasia. CNS Neurosci Ther 22:280–290. doi: 10.1111/cns.12494 CrossRefPubMedGoogle Scholar
  9. Engel J (1987) Surgical treatment of the epilepsies. Raven Press, New YorkGoogle Scholar
  10. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105:13445–13450. doi: 10.1073/pnas.0806974105 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fancy SP et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. doi: 10.1038/nn.2855 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Mueller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749. doi: 10.1126/science.1223616 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guerrini R et al (2015) Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 56:1669–1686. doi: 10.1111/epi.13200 CrossRefPubMedGoogle Scholar
  14. Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JL, Chen B (2013) Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80:1167–1174. doi: 10.1016/j.neuron.2013.09.037 CrossRefPubMedGoogle Scholar
  15. Guo L et al (2014) Liver X receptor beta delays transformation of radial glial cells into astrocytes during mouse cerebral cortical development. Neurochem Int 71:8–16. doi: 10.1016/j.neuint.2014.03.009 CrossRefPubMedGoogle Scholar
  16. Hadjivassiliou G, Martinian L, Squier W, Blumcke I, Aronica E, Sisodiya SM, Thom M (2010) The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy. Acta Neuropathol 120:517–528. doi: 10.1007/s00401-010-0686-x CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. doi: 10.1146/annurev.neuro.051508.135600 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lamparello P, Baybis M, Pollard J, Hol EM, Eisenstat DD, Aronica E, Crino PB (2007) Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 130:2267–2276. doi: 10.1093/brain/awm175 CrossRefPubMedGoogle Scholar
  19. Malatesta P, Goetz M (2013) Radial glia—from boring cables to stem cell stars. Development 140:483–486. doi: 10.1242/dev.085852 CrossRefPubMedGoogle Scholar
  20. Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL (2014) Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol 128:5–19. doi: 10.1007/s00401-014-1304-0 CrossRefPubMedGoogle Scholar
  21. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci Off J Soc Neurosci 22:3161–3173Google Scholar
  22. Relucio J, Menezes MJ, Miyagoe-Suzuki Y, Takeda S, Colognato H (2012) Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia 60:1451–1467. doi: 10.1002/glia.22365 CrossRefPubMedGoogle Scholar
  23. Saher G et al (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475. doi: 10.1038/nn1426 PubMedGoogle Scholar
  24. Schick V et al (2007) Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol 17:165–173. doi: 10.1111/j.1750-3639.2007.00059.x CrossRefPubMedGoogle Scholar
  25. Shepherd C, Liu J, Goc J, Martinian L, Jacques TS, Sisodiya SM, Thom M (2013) A quantitative study of white matter hypomyelination and oligodendroglial maturation in focal cortical dysplasia type II. Epilepsia 54:898–908. doi: 10.1111/epi.12143 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tan XJ, Fan XT, Kim HJ, Butler R, Webb P, Warner M, Gustafsson JA (2010) Liver X receptor beta and thyroid hormone receptor alpha in brain cortical layering. Proc Natl Acad Sci U S A 107:12305–12310. doi: 10.1073/pnas.1006162107 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA (1971) Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 34:369–387CrossRefPubMedPubMedCentralGoogle Scholar
  28. Urbach H et al (2002) Focal cortical dysplasia of Taylor’s balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome. Epilepsia 43:33–40CrossRefPubMedGoogle Scholar
  29. Warner M, Gustafsson JA (2015) Estrogen receptor beta and Liver X receptor beta: biology and therapeutic potential in CNS diseases. Mol Psychiatry 20:18–22. doi: 10.1038/mp.2014.23 CrossRefPubMedGoogle Scholar
  30. Xing Y, Fan X, Ying D (2010) Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 115:1486–1494. doi: 10.1111/j.1471-4159.2010.07053.x CrossRefPubMedGoogle Scholar
  31. Xu P et al (2014) Liver X receptor beta is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry 19:947–957. doi: 10.1038/mp.2014.60 CrossRefPubMedGoogle Scholar
  32. Ye F et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838. doi: 10.1038/nn.2333 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yue T, Xian K, Hurlock E, Xin M, Kernie SG, Parada LF, Lu QR (2006) A critical role for dorsal progenitors in cortical myelination. J Neurosci Off J Soc Neurosci 26:1275–1280. doi: 10.1523/jneurosci.4717-05.2006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xin Chen
    • 1
  • Lukang Wang
    • 1
  • Bing Chen
    • 1
  • Jiong Yue
    • 1
  • Gang Zhu
    • 1
  • Chunqing Zhang
    • 1
  • Shiyong Liu
    • 1
  • Hui Yang
    • 1
    Email author
  1. 1.Department of Neurosurgery, Xinqiao HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations