Advertisement

Journal of Molecular Neuroscience

, Volume 59, Issue 1, pp 18–23 | Cite as

Expression Profile of Long Non-Coding RNAs in Serum of Patients with Multiple Sclerosis

  • Massimo Santoro
  • Viviana Nociti
  • Matteo Lucchini
  • Chiara De Fino
  • Francesco Antonio Losavio
  • Massimiliano Mirabella
Article

Abstract

Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central nervous system (CNS) that leads to severe neurological disability. There is an interest in potential biomarkers that could provide information predicting disease activity and progression. Long non-coding RNAs (lncRNAs) have been reported to be involved in the pathogenesis of various human disorders, such as oncologic, cardiovascular, and neurodegenerative diseases. No studies have so far explored a potential link between lncRNAs and MS pathology. We screened 84 lncRNAs, involved in autoimmunity and human inflammatory response, in the serum of relapsing-remitting MS (RR-MS) patients (n = 12), age-matched controls (n = 12), and in patients with idiopathic inflammatory myopathy (IIM) (n = 12). We used the following criteria for lncRNAs analysis: fold change >2 and p < 0.05. According to these criteria, by real-time PCR, we identified three lncRNAs up-regulated in RR-MS patients respectively to controls: nuclear paraspeckle assembly transcript 1 (NEAT1), taurine up-regulated 1 (TUG1), and 7SK small nuclear (RN7SK RNA). Literature data showed that NEAT1, TUG1, and RN7SK RNA play an important role in neurodegenerative processes. Our results indicate that these lncRNAs may be involved in MS pathogenesis. Additional experimental data are needed to clarify the molecular mechanisms through which lncRNAs up-regulation may have a role in MS.

Keywords

Multiple sclerosis Long non-coding RNA Autoimmunity Neurodegeneration 

Abbreviations

MS

Multiple sclerosis

RR-MS

Relapsing-remitting MS

IIM

Idiopathic inflammatory myopathy

CNS

Central nervous system

EAE

Experimental autoimmune encephalomyelitis

BBB

Blood–brain barrier

BDNF

Brain-derived neurotrophic factor

lncRNA

Long non-coding RNA

NEAT1

Nuclear paraspeckle assembly transcript 1

TUG1

Taurine up-regulated 1

RN7SK RNA

7SK small nuclear

PRC2

Polycomb repressive complex 2

SFPQ

Splicing factor proline/glutamine-rich

TLR3

Toll-like receptor three

Notes

Acknowledgments

We thank Drs Luca Mazzitelli, Song Tian, and Samuel J. Rulli (QIAGEN) for the technical assistance and data analysis. This work was supported by grants from the Catholic University and the Italian Ministry of University and Scientific Research.

Compliance with Ethical Standards

The study was performed in accordance with the Declaration of Helsinki ethical principles for medical research involving human subjects. A written informed consent was signed by all subjects before participating to the study.

Disclosure

All authors have made substantial contributions to this work. All the authors have no actual or potential conflict of interest to disclose regarding this work.

References

  1. Bsibsi M, Bajramovic JJ, Vogt MH, van Duijvenvoorden E, Baghat A, Persoon-Deen C, Tielen F, Verbeek R, Huitinga I, Ryffel B, Kros A, Gerritsen WH, Amor S, van Noort JM (2010) The Microtubule regulator stathmin is an endogenous protein agonist for TLR3. J Immunol 184(12):6929–6937CrossRefPubMedGoogle Scholar
  2. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long non coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369CrossRefPubMedPubMedCentralGoogle Scholar
  3. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874CrossRefPubMedGoogle Scholar
  4. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C (2008) Expression of a non coding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14(7):723–730CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gandhi R (2015) miRNA in multiple sclerosis: search for novel biomarkers. Mult Scler 21(9):1095–1103CrossRefPubMedGoogle Scholar
  6. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712CrossRefPubMedGoogle Scholar
  7. Ghose R, Liou LY, Herrmann CH, Rice AP (2001) Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4(+) T lymphocytes by combination of cytokines. J Virol 75(23):11336–11343CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076CrossRefPubMedPubMedCentralGoogle Scholar
  9. He N, Jahchan NS, Hong E, Li Q, Bayfield MA, Maraia RJ, Luo K, Zhou QA (2008) La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell 29(5):588–599CrossRefPubMedGoogle Scholar
  10. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53(3):393–406CrossRefPubMedGoogle Scholar
  11. Ip JY, Nakagawa S (2012) Long non-coding RNAs in nuclear bodies. Develop Growth Differ 54(1):44–54CrossRefGoogle Scholar
  12. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672CrossRefPubMedPubMedCentralGoogle Scholar
  13. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517CrossRefPubMedGoogle Scholar
  14. Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, Kay O, de Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28(6):2551–2565CrossRefPubMedGoogle Scholar
  15. Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, Gilmore W, Cheema GS, Stohl W, Burnett ME, Ko D, Kachuck NJ, Weiner LP (2004) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 155(1–2):161–171CrossRefPubMedGoogle Scholar
  16. Markert A, Grimm M, Martinez J, Wiesner J, Meyerhans A, Meyuhas O, Sickmann A, Fischer U (2008) The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 9(6):569–575CrossRefPubMedPubMedCentralGoogle Scholar
  17. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8(9):913–919CrossRefPubMedGoogle Scholar
  18. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30(5):453–459CrossRefPubMedPubMedCentralGoogle Scholar
  19. Peng R, Dye BT, Pérez I, Barnard DC, Thompson AB, Patton JG (2002) PSF and p54nrb bind a conserved stem in U5 snRNA. RNA 8(10):1334–1347CrossRefPubMedPubMedCentralGoogle Scholar
  20. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rossi S, Motta C, Studer V, Macchiarulo G, Volpe E, Barbieri F, Ruocco G, Buttari F, Finardi A, Mancino R, Weiss S, Battistini L, Martino G, Furlan R, Drulovic J, Centonze D (2014) Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p 53. Mol Neurodegener 9(12):56CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 106(8):2525–2530CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sigdel KR, Cheng A, Wang Y, Duan L, Zhang Y (2015) The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. J Immunol Res 2015:848790CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sung TL, Rice AP (2006) Effects of prostratin on cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells. Retrovirology 3(2):66CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19(3):347–359CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693CrossRefPubMedPubMedCentralGoogle Scholar
  27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361CrossRefPubMedGoogle Scholar
  29. Wu GC, Pan HF, Leng RX, Wang DG, Li XP, Li XM, Ye DQ (2015) Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14(9):798–805CrossRefPubMedGoogle Scholar
  30. Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 15(6):501–512CrossRefPubMedGoogle Scholar
  31. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014a) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266(1–2):56–63CrossRefPubMedGoogle Scholar
  32. Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, Han L, Xia R, Wang KM, Yang JS, De W, Shu YQ, Wang ZX (2014b) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 5(22):e1243CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Massimo Santoro
    • 1
  • Viviana Nociti
    • 1
    • 2
  • Matteo Lucchini
    • 2
  • Chiara De Fino
    • 2
  • Francesco Antonio Losavio
    • 2
  • Massimiliano Mirabella
    • 2
  1. 1.Fondazione Don Carlo GnocchiMilanItaly
  2. 2.Department of Geriatrics, Neuroscience and Orthopedics, Institute of NeurologyUCSCRomeItaly

Personalised recommendations