Journal of Molecular Neuroscience

, Volume 59, Issue 1, pp 90–98 | Cite as

The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke

  • Jing Sun
  • Guangxian Nan


Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.


MAPK pathway Stroke Inflammation Apoptosis 


Compliance with Ethical Standards

Conflict Interests

The authors declare no potential conflicts of interests.


  1. Ahnstedt H, Säveland H, Nilsson O, Edvinsson L (2011) Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway. BMC Neurosci 12:5CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ansar S, Maddahi A, Edvinsson L (2011) Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci 12:107CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786CrossRefPubMedPubMedCentralGoogle Scholar
  4. Babu R, Bagley JH, Di C, Friedman AH, Adamson C (2012) Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 32(4):E8CrossRefPubMedGoogle Scholar
  5. Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI (2015) Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 19(2):260–270CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI (2006) ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ETB and 5-HT1B receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab 26(6):846–856CrossRefPubMedGoogle Scholar
  7. Borders AS, de Almeida L, Van Eldik LJ, Watterson DM (2008) The p38αmitogen-actibated protein kinase as a central nervous system drug discovery target. BMC Neurosci 9(Suppl 2):S12CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai Y, Cho GS, Ju C, Wang SL, Ryu JH, Shin CY, Kim HS, Nam KW, Jalin AMAA, Sun W, Choi IY, Kim WK (2011) Activated microglia are less vulnerable to hemin toxicity due to nitric oxide-dependent inhibition of JNK and p38 MAPK activation. J Immunol 187(3):1314–1321CrossRefPubMedGoogle Scholar
  9. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64(2):328–363CrossRefPubMedGoogle Scholar
  10. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG, Arumugam TV (2014) Evidence that neuronal notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res 1586:193–202CrossRefPubMedGoogle Scholar
  12. Choudhury G, Ryou MG, Poteet E, Wen Y, He R, Sun F, Yuan F, Jin K, Yang SH (2014) Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res 1551:45–58CrossRefPubMedCentralGoogle Scholar
  13. Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M, Richardson JC (2006) MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 281(33):23658–23667CrossRefPubMedGoogle Scholar
  14. Edelmayer RM, Brederson JD, Jarvis MF, Bitner RS (2014) Biochemical and pharmacological assessment of MAP-kinase signaling along pain pathways in experimental rodent models: a potential tool for the discovery of novel antinociceptive therapeutics. Biochem Pharmacol 87(3):390–398CrossRefPubMedGoogle Scholar
  15. Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fischer S, Wiesnet M, Renz D, Schaper W (2005) H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 84(7):687–697CrossRefPubMedGoogle Scholar
  17. Fujimoto S, Katsuki H, Kume T, Akaike A (2006) Thrombin-induced delayed injury involves multiple and distinct signaling pathways in the cerebral cortex and the striatum in organotypic slice cultures. Neurobiol Dis 22(1):130–142CrossRefPubMedGoogle Scholar
  18. Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A (2007) Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144(2):694–701CrossRefPubMedGoogle Scholar
  19. Gladbach A, van Eersel J, Bi M, Ke YD, Ittner LM (2014) ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke. J Neural Transm 121(5):543–547PubMedGoogle Scholar
  20. González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756CrossRefPubMedGoogle Scholar
  21. Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Åkerström B, Ley D (2013) Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation 10:100CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gurgis FM, Ziaziaris W, Munoz L (2014) Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol 85(2):345–356CrossRefPubMedGoogle Scholar
  23. He Q, Bao L, Zimering J, Zan K, Zhang Z, Shi H, Zu J, Yang X, Hua F, Ye X, Cui G (2015) The protective role of (−)-epigallocatechin-3-gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. Neuroreport 26(7):416–423CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang L, Wan J, Chen Y, Wang ZW, Hui L, Li Y, Xu DW, Zhou WK (2013) Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in mice. Brain Res 1517:133–140CrossRefPubMedGoogle Scholar
  25. Kaminska B, Gozdz A, Zawadzka M, Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec 292(12):1902–1913CrossRefGoogle Scholar
  26. Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA, Davis RJ (2011) TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 25(19):2069–2078CrossRefPubMedPubMedCentralGoogle Scholar
  27. Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G (2014) Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kleinig TJ, Vink R (2009) Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 22(3):294–301CrossRefPubMedGoogle Scholar
  29. Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-αbiosynthesis. Nat Cell Biol 1(2):94–97CrossRefPubMedGoogle Scholar
  30. Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37(7):1568–1577CrossRefPubMedGoogle Scholar
  32. Krementsov DN, Thornton TM, Teuscher C, Rincon M (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33(19):3728–3734CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737CrossRefPubMedGoogle Scholar
  34. Lei YY, Wang WJ, Mei JH, Wang CL (2014) Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev 15(20):8539–8548CrossRefPubMedGoogle Scholar
  35. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76(13):6689–6700CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ma Q, Huang B, Khatibi N, Rolland W II, Suzuki H, Zhang JH, Tang J (2011) PDGFR-⍺ inhibition preserves blood–brain barrier after intracerebral hemorrhage. Ann Neurol 70(6):920–931CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maddahi A, Ansar S, Chen Q, Edvinsson L (2011a) Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31(1):144–154CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maddahi A, Edvinsson L (2010) Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation 7:14CrossRefPubMedPubMedCentralGoogle Scholar
  40. Maddahi A, Kruse LS, Chen QW, Edvinsson L (2011b) The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation 8(1):107CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation 9:274CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21(19):6461–6469CrossRefPubMedPubMedCentralGoogle Scholar
  43. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4(3):225–236CrossRefPubMedGoogle Scholar
  44. Miller F, Fenart L, Landry V, Coisne C, Cecchelli R, Dehouck MP, Scherrer VB (2005) The MAP kinase pathway mediates transcytosis induced by TNF-αin an in vitro blood–brain barrier model. Eur J Neurosci 22(4):835–844CrossRefPubMedGoogle Scholar
  45. Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 8:388CrossRefPubMedPubMedCentralGoogle Scholar
  46. Munshi A, Ramesh R (2013) Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4(9–10):401–408CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH (2008) Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood–brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28(10):1686–1696CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ohnishi M, Katsuki H, Fujimoto S, Takagi M, Kume T, Akaike A (2007) Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol 206(1):43–52CrossRefPubMedGoogle Scholar
  49. Ohnishi M, Katsuki H, Izumi Y, Kume T, Takada-Takatori Y, Akaike A (2010) Mitogen-activated protein kinases support survival of activated microglia that mediate thrombin-induced striatal injury in organotypic slice culture. J Neurosci Res 88(10):2155–2164CrossRefPubMedGoogle Scholar
  50. Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, Zhang X, Shi JX (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-α. J Clin Neurosci 20(5):726–730CrossRefPubMedGoogle Scholar
  51. Piao CS, Kim JB, Han PL, Lee JK (2003) Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73(4):537–544CrossRefPubMedGoogle Scholar
  52. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310CrossRefPubMedGoogle Scholar
  53. Ruhul Amin AR, Senga T, Oo ML, Thant AA, Hamaguchi M (2003) Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1beta: a role for the dual signalling pathways, Akt and erk. Genes Cells 8(6):515–523CrossRefPubMedGoogle Scholar
  54. Sabio G, Davis RJ (2014) TNF and MAP kinase signalling pathways. Semin Immunol 26(3):237–245CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L (2007) Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res 183(4):499–510CrossRefPubMedGoogle Scholar
  56. Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. Cereb Blood Flow Metab 27:894–908Google Scholar
  57. Wang X, Xu L, Wang H, Young PR, Gaestel M, Feuerstein GZ (2002) Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain from ischemic injury in mice. J Biol Chem 277(46):43968–43972CrossRefPubMedGoogle Scholar
  58. Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW (2013) Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 44(9):2545–2552CrossRefPubMedGoogle Scholar
  59. Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL, Yang QW (2014) Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 75(6):876–889CrossRefPubMedGoogle Scholar
  60. Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996(1):55–66CrossRefPubMedGoogle Scholar
  61. Wu B, Ma Q, Khatibi N, Chen W, Sozen T, Cheng Q, Tang J (2010) Ac-YVAD-CMK decreases blood–brain barrier degradation by inhibiting caspase-1 activation of interleukin-1βin intracerebral hemorrhage mouse model. Transl Stroke Res 1(1):57–64CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1β-induced marix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90(6):1477–1488CrossRefPubMedGoogle Scholar
  63. Wu Y, Chakrabarti S (2015) ERK5 mediated signalling in diabetic retinopathy. Med Hypothesis Discov Innov Ophthalmol 4:17–26PubMedPubMedCentralGoogle Scholar
  64. Yang Y, Kim SC, Yu T, Yi TY, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2014:352371Google Scholar
  65. Zhang BF, Song JN, Ma XD, Zhao YL, Liu ZW, Sun P, Li DD, Pang HG, Huang TQ (2015) Etanercept alleviates early brain injury following experimental subarachnoid hemorrhage and the possible role of tumor necrosis factor-α and c-Jun N-terminal kinase pathway. Neurochem Res 40(3):591–599CrossRefPubMedGoogle Scholar
  66. Zhang X, Zhao XD, Shi JX, Yin HX (2011) Inhibition of the p38 mitogen-activated protein kinase (MAPK) pathway attenuates cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Ann Clin Lab Sci 41(3):244–250PubMedGoogle Scholar
  67. Zhou Y, Wang Y, Wang J, Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeurologyChina-Japan Union Hospital of Jilin UniversityChangchunChina

Personalised recommendations