Journal of Molecular Neuroscience

, Volume 58, Issue 1, pp 46–58 | Cite as

Multifactorial Gene Therapy Enhancing the Glutamate Uptake System and Reducing Oxidative Stress Delays Symptom Onset and Prolongs Survival in the SOD1-G93A ALS Mouse Model

  • Chen Benkler
  • Yael Barhum
  • Tali Ben-Zur
  • Daniel Offen


The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19–22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS.


Amyotrophic lateral sclerosis (ALS) Gene therapy Glutamate EAAT2 GDH2 NRF2 


  1. Azzouz M, Ralph G, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417CrossRefPubMedGoogle Scholar
  2. Barber S, Shaw P (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641CrossRefPubMedGoogle Scholar
  3. Bendotti C, Carri M (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400CrossRefPubMedGoogle Scholar
  4. Benkler C, Ben Zur T, Barhum Y, Offen D (2013a) Altered astrocytic response to activation in SOD1(G93A) mice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 61:312–326CrossRefPubMedGoogle Scholar
  5. Benkler C, Offen D, Melamed E, et al. (2013b) Advances in predictive, preventive and personalised medicine, Chapter: Recent advances in ALS research: perspectives for personalized clinical application. Business Media DordrechtGoogle Scholar
  6. Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330:585–591CrossRefPubMedGoogle Scholar
  7. Bialer M (2012) Chemical properties of antiepileptic drugs (AEDs). Adv Drug Deliv Rev 64:887–895CrossRefPubMedGoogle Scholar
  8. Boillée S, Vande Velde C, Cleveland D (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59CrossRefPubMedGoogle Scholar
  9. Brambilla L, Martorana F, Rossi D (2013) Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 7:28–36PubMedCentralCrossRefPubMedGoogle Scholar
  10. Calkins M, Vargas M, Johnson D, Johnson J (2010) Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci 115:557–568PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cashman N, Durham H, Blusztajn J et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221CrossRefPubMedGoogle Scholar
  12. Charles T, Swash M (2001) Amyotrophic lateral sclerosis: current understanding. J Neurosci Nurs 33:245–253CrossRefPubMedGoogle Scholar
  13. Coyle J, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695CrossRefPubMedGoogle Scholar
  14. Cozzolino M, Ferri A, Carri M (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10:405–443CrossRefPubMedGoogle Scholar
  15. Cronin S, Berger S, Ding J et al (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774CrossRefPubMedGoogle Scholar
  16. de Carvalho M, Pinto S, Costa J, Evangelista T, Ohana B, Pinto A (2010) A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:456–460CrossRefPubMedGoogle Scholar
  17. Eggett C, Crosier S, Manning P et al (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74:1895–1902CrossRefPubMedGoogle Scholar
  18. Gordon P, Moore D, Miller R et al (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6:1045–1053CrossRefPubMedGoogle Scholar
  19. Guo H, Lai L, Butchbach M et al (2003) Increased expression of the glial glutamate. Hum Mol Genet 12:2519–2532CrossRefPubMedGoogle Scholar
  20. Gurney M, Pu H, Chiu A et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775CrossRefPubMedGoogle Scholar
  21. Heath P, Shaw P (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438–458CrossRefPubMedGoogle Scholar
  22. Howland D, Liu J, She Y et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99:1604–1609PubMedCentralCrossRefPubMedGoogle Scholar
  23. Hybertson B, Gao B, Bose S, McCord J (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. HYPERLINK “” \o “Molecular aspects of medicine.” Mol Aspects Med 32:234–246
  24. Ilieva H, Polymenidou M, Cleveland D (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kaspar B, Llado J, Sherkat N, Rothstein J, Gage F (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842CrossRefPubMedGoogle Scholar
  26. Kruman I, Pedersen W, Springer J, Mattson M (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39CrossRefPubMedGoogle Scholar
  27. Lacomblez L, Bensimon G, Leigh P, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347:1425–1431CrossRefPubMedGoogle Scholar
  28. Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. HYPERLINK “” \o “Journal of neuroscience research.” J Neurosci Res 79:65–73
  29. Matusica D, Fenech M, Rogers M, Rush R (2008) Characterization and use of the NSC-34 cell line for study of neurotrophin receptor trafficking. J Neurosci Res 86:553–565CrossRefPubMedGoogle Scholar
  30. Nagai M, Re D, Nagata T et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622PubMedCentralCrossRefPubMedGoogle Scholar
  31. Oliveira A, Pereira R (2009) Amyotrophic lateral sclerosis (ALS): three letters that change the people’s life. For ever. Arq Neuropsiquiatr 67:750–782CrossRefPubMedGoogle Scholar
  32. Orrell R, Lane R, Ross M (2007) Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 1:CD002829PubMedGoogle Scholar
  33. Palmada M, Centelles J (1998) Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci 20(3):d701–d718Google Scholar
  34. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434CrossRefPubMedGoogle Scholar
  35. Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66:899–908CrossRefPubMedGoogle Scholar
  36. Polymenidou M, Cleveland D (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508PubMedCentralCrossRefPubMedGoogle Scholar
  37. Ralph G, Radcliffe P, Day D et al (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433CrossRefPubMedGoogle Scholar
  38. Rosen D, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62CrossRefPubMedGoogle Scholar
  39. Rothstein J (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9CrossRefPubMedGoogle Scholar
  40. Rothstein J, Van Kammen M, Levey A, Martin L, Kuncl R (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84CrossRefPubMedGoogle Scholar
  41. Rothstein J, Dykes-Hoberg M, Pardo C et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686CrossRefPubMedGoogle Scholar
  42. Rothstein J, Patel S, Regan M et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77CrossRefPubMedGoogle Scholar
  43. Spanaki C, Zaganas I, Kleopa K, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285:16748–16756PubMedCentralCrossRefPubMedGoogle Scholar
  44. Suzuki M, McHugh J, Tork C et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16:2002–2010PubMedCentralCrossRefPubMedGoogle Scholar
  45. Turner B, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD-1-mediated familial ALS. Prog Neurobiol 85:94–134CrossRefPubMedGoogle Scholar
  46. Van Damme P, Dewil M, Robberecht W, Van Den Bosch L (2005) Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis 2:147–159CrossRefPubMedGoogle Scholar
  47. Van Den Bosch L, Robberecht W (2008) Crosstalk between astrocytes and motor neurons: what is the message? Exp Neurol 211:1–6CrossRefGoogle Scholar
  48. Vargas M, Johnson J (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17CrossRefPubMedGoogle Scholar
  49. Vargas M, Pehar M, Cassina P, Beckman J, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97:687–696CrossRefPubMedGoogle Scholar
  50. Vargas M, Johnson D, Sirkis D, Messing A, Johnson J (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581PubMedCentralCrossRefPubMedGoogle Scholar
  51. Wan L, Sharma K, Grisotti G, Roos R (2009) The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis 35:234–240CrossRefGoogle Scholar
  52. Wang L, Lu Y, Muramatsu S et al (2002) Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22:6920–6928PubMedGoogle Scholar
  53. Weishaupt J, Bartels C, Pölking E et al (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323CrossRefPubMedGoogle Scholar
  54. Wong P, Pardo C, Borchelt D et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116CrossRefPubMedGoogle Scholar
  55. Xiao S, McLean J, Robertson J (2006) Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta 1762:1001–1012CrossRefPubMedGoogle Scholar
  56. Yamanaka K, Chun S, Boillee S et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chen Benkler
    • 1
  • Yael Barhum
    • 1
  • Tali Ben-Zur
    • 1
  • Daniel Offen
    • 1
    • 2
  1. 1.Felsenstein Medical Research Center, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Felsenstein Medical Research CenterRabin Medical CenterPetah TikvaIsrael

Personalised recommendations