Journal of Molecular Neuroscience

, Volume 58, Issue 3, pp 348–364 | Cite as

The Role of the Protein Quality Control System in SBMA

  • Paola Rusmini
  • Valeria Crippa
  • Riccardo Cristofani
  • Carlo Rinaldi
  • Maria Elena Cicardi
  • Mariarita Galbiati
  • Serena Carra
  • Bilal Malik
  • Linda Greensmith
  • Angelo PolettiEmail author


Spinal and bulbar muscular atrophy (SBMA) or Kennedy’s disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.


Androgen receptor Polyglutamine CAG triplet repeat Neurodegeneration Motoneuron diseases Muscle SBMA Testosterone Autophagy Protein quality control system Proteotoxicity Proteasome UPR ERAD HSPB8 Chaperones Misfolded protein Aggregation BAG3 Rusmini Paola, Crippa Valeria, Greensmith Linda, and Poletti Angelo equally contributed to this study. 



The following grants are gratefully acknowledged: Fondazione Telethon, Italy (n. GGP14039); Fondazione Cariplo, Italy (n. 2014–0686); Fondazione AriSLA, Italy (n. ALS_HSPB8 and ALS_Granulopathy); Association Française contre les Myopathies (AFM Telethon), France (n. 16,406); Regione Lombardia; Università degli Studi di Milano e piano di sviluppo UNIMI - linea B; and Italian Ministry of Health (n. GR-2011-02347198); EU Joint Programme - Neurodegenerative Disease Research (JPND).


  1. Adachi H, Katsuno M, Minamiyama M, et al. (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211PubMedGoogle Scholar
  2. Adachi H, Katsuno M, Minamiyama M, et al. (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain Res 128:659–670Google Scholar
  3. Adachi H, Katsuno M, Waza M, Minamiyama M, Tanaka F, Sobue G (2009) Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications. Int J Hyperther 25(8):647–654. doi: 10.3109/02656730903315823 CrossRefGoogle Scholar
  4. Adachi H, Waza M, Tokui K, et al. (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27(19):5115–5126. doi: 10.1523/jneurosci.1242-07.2007 PubMedCrossRefGoogle Scholar
  5. Anagnostou, G., Akbar, M.T., Paul, P., Angelinetta, C., Steiner, T.J., de Belleroche, J. 2010. Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol Aging 31(969–985). doi:10.1016/j.neurobiolaging.2008.07.005.Google Scholar
  6. Arndt V, Dick N, Tawo R, et al. (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148. doi: 10.1016/j.cub.2009.11.022 PubMedCrossRefGoogle Scholar
  7. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431(7010):805–810PubMedCrossRefGoogle Scholar
  8. Atsuta N, Watanabe H, Ito M, et al. (2006) Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 129(Pt 6):1446–1455. doi: 10.1093/brain/awl096 PubMedCrossRefGoogle Scholar
  9. Azzouz M, Ralph GS, Storkebaum E, et al. (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417. doi: 10.1038/nature02544 PubMedCrossRefGoogle Scholar
  10. Bailey CK, Andriola IF, Kampinga HH, Merry DE (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11:515–523PubMedCrossRefGoogle Scholar
  11. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919. doi: 10.1126/science.1141448 PubMedCrossRefGoogle Scholar
  12. Beitel LK, Alvarado C, Mokhtar S, Paliouras M, Trifiro M (2013) Mechanisms mediating spinal and bulbar muscular atrophy: investigations into polyglutamine-expanded androgen receptor function and dysfunction. Front Neurol 4:53. doi: 10.3389/fneur.2013.00053 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boyce M, Bryant KF, Jousse C, et al. (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939. doi: 10.1126/science.1101902 PubMedCrossRefGoogle Scholar
  14. Boyer JG, Ferrier A, Kothary R (2013a) More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol 4:356. doi: 10.3389/fphys.2013.00356 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyer JG, Murray LM, Scott K, De Repentigny Y, Renaud JM, Kothary R (2013b) Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle 3(1):24. doi: 10.1186/2044-5040-3-24 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat rev Mol Cell Biol 8(9):729–740. doi: 10.1038/nrm2233 PubMedCrossRefGoogle Scholar
  17. Carra S (2009) The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy 5(3):428–429PubMedCrossRefGoogle Scholar
  18. Carra S, Crippa V, Rusmini P, et al. (2012) Alteration of protein folding and degradation in motor neuron diseases: implications and protective functions of small heat shock proteins. Prog Neurobiol 97(2):83–100. doi: 10.1016/j.pneurobio.2011.09.009 PubMedCrossRefGoogle Scholar
  19. Carra S, Rusmini P, Crippa V, et al. (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond Ser B Biol Sci 368(1617):20110409. doi: 10.1098/rstb.2011.0409 CrossRefGoogle Scholar
  20. Carra S, Seguin SJ, Lambert H, Landry J (2008a) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444. doi: 10.1074/jbc.M706304200 PubMedCrossRefGoogle Scholar
  21. Carra S, Seguin SJ, Landry J (2008b) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4(2):237–239PubMedCrossRefGoogle Scholar
  22. Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14(12):1659–1669PubMedCrossRefGoogle Scholar
  23. Chua JP, Reddy SL, Merry DE, et al. (2014) Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23(5):1376–1386. doi: 10.1093/hmg/ddt527 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147. doi: 10.1038/emm.2014.117 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colla E, Coune P, Liu Y, et al. (2012a) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 32(10):3306–3320. doi: 10.1523/JNEUROSCI.5367-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012b) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32(10):3301–3305. doi: 10.1523/JNEUROSCI.5368-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cortes CJ, Ling SC, Guo LT, et al. (2014a) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82(2):295–307. doi: 10.1016/j.neuron.2014.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cortes CJ, Miranda HC, Frankowski H, et al. (2014b) Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 17(9):1180–1189. doi: 10.1038/nn.3787 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Crippa V, Boncoraglio A, Galbiati M, et al. (2013a) Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Front Cell Neurosci 7:234. doi: 10.3389/fncel.2013.00234 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crippa V, Carra S, Rusmini P, et al. (2010a) A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy 6(7):958–960. doi: 10.4161/auto.6.7.13042 PubMedCrossRefGoogle Scholar
  31. Crippa V, Galbiati M, Boncoraglio A, et al. (2013b) Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochem Soc T 41(6):1598–1604. doi: 10.1042/BST20130118 CrossRefGoogle Scholar
  32. Crippa V, Sau D, Rusmini P, et al. (2010b) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456. doi: 10.1093/hmg/ddq257 PubMedCrossRefGoogle Scholar
  33. Cudkowicz ME, Shefner JM, Simpson E, et al. (2008) Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve 38(1):837–844. doi: 10.1002/mus.21059 PubMedCrossRefGoogle Scholar
  34. Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P (2011) Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nature Med 17(11):1445–1447. doi: 10.1038/nm.2494 PubMedPubMedCentralCrossRefGoogle Scholar
  35. D’Ydewalle C, Bogaert E, Van Den Bosch L (2012) HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic 13(6):771–779. doi: 10.1111/j.1600-0854.2012.01347.x PubMedCrossRefGoogle Scholar
  36. Dallavalle S, Pisano C, Zunino F (2012) Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 84(6):756–765. doi: 10.1016/j.bcp.2012.06.014 PubMedCrossRefGoogle Scholar
  37. Dehay B, Bove J, Rodriguez-Muela N, et al. (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. doi: 10.1523/jneurosci.1920-10.2010 PubMedCrossRefGoogle Scholar
  38. Doi H, Adachi H, Katsuno M, et al. (2013) p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J Neurosci 33(18):7710–7727. doi: 10.1523/JNEUROSCI.3021-12.2013 PubMedCrossRefGoogle Scholar
  39. Dossena M, Bedini G, Rusmini P, et al. (2014) Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy. PLoS One 9(11):e112746. doi: 10.1371/journal.pone.0112746 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fischbeck KH (1997) Kennedy disease. J Inher Metab Dis 20(2):152–158PubMedCrossRefGoogle Scholar
  41. Fischbeck KH (2012) Developing treatment for spinal and bulbar muscular atrophy. Prog Neurobiol 99(3):257–261. doi: 10.1016/j.pneurobio.2012.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fontaine JM, Sun X, Hoppe AD, et al. (2006) Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants. FASEB J 20(12):2168–2170PubMedCrossRefGoogle Scholar
  43. Foradori CD, Handa RJ (2008) Living or dying in three quarter time: neonatal orchestration of hippocampal cell death pathways by androgens and excitatory GABA. Exp Neurol 213(1):1–6. doi: 10.1016/j.expneurol.2008.04.035 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fratta P, Collins T, Pemble S, et al. (2014a) Sequencing analysis of the spinal bulbar muscular atrophy CAG expansion reveals absence of repeat interruptions. Neurobiol Aging 35(2):443 e1-3. doi: 10.1016/j.neurobiolaging.2013.07.015. PubMedPubMedCentralGoogle Scholar
  45. Fratta P, Nirmalananthan N, Masset L, et al. (2014b) Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 82(23):2077–2084. doi: 10.1212/WNL.0000000000000507 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fujinaga R, Takeshita Y, Uozumi K, et al. (2009) Microtubule-dependent formation of the stigmoid body as a cytoplasmic inclusion distinct from pathological aggresomes. Histochem Cell Biol 132(3):305–318. doi: 10.1007/s00418-009-0618-9 PubMedCrossRefGoogle Scholar
  47. Galbiati M, Crippa V, Rusmini P, et al. (2014) ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 79:70–78. doi: 10.1016/j.neuint.2014.10.007 PubMedCrossRefGoogle Scholar
  48. Gamerdinger M, Carra S, Behl C (2011) Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med 89(12):1175–1182. doi: 10.1007/s00109-011-0795-6 PubMedCrossRefGoogle Scholar
  49. Giorgetti E, Rusmini P, Crippa V, et al. (2015) Synergic prodegradative activity of bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy. Hum Mol Genet. 24(1):64–75. doi: 10.1093/hmg/ddu419
  50. Grunseich C, Kats IR, Bott LC, et al. (2014a) Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat. Neuromuscular Disord 24(11):978–981. doi: 10.1016/j.nmd.2014.06.441 CrossRefGoogle Scholar
  51. Grunseich C, Rinaldi C, Fischbeck KH (2014b) Spinal and bulbar muscular atrophy: pathogenesis and clinical management. Oral Dis 20(1):6–9. doi: 10.1111/odi.12121 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hageman J, Rujano MA, van Waarde MA, et al. (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37(3):355–369. doi: 10.1016/j.molcel.2010.01.001 PubMedCrossRefGoogle Scholar
  53. Hargitai J, Lewis H, Boros I, et al. (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Com 307(3):689–695PubMedCrossRefGoogle Scholar
  54. Heine, E.M., Berger, T.R., Pluciennik, A., Orr, C.R., Merry, D.E. 2015. Proteasome-mediated proteolysis of the polyglutamine-expanded androgen receptor is a late event in SBMA pathogenesis. J Biol Chem. doi:10.1074/jbc.M114.617894.Google Scholar
  55. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249. doi: 10.1038/nrn3689 PubMedCrossRefGoogle Scholar
  56. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24(9):506–514. doi: 10.1016/j.tcb.2014.05.003 PubMedCrossRefGoogle Scholar
  57. Howarth JL, Kelly S, Keasey MP, et al. (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther 15(6):1100–1105. doi: 10.1038/ PubMedGoogle Scholar
  58. Huang X, Ding L, Bennewith KL, et al. (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867. doi: 10.1016/j.molcel.2009.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Iida M, Katsuno M, Nakatsuji H, et al. (2015) Pioglitazone suppresses neuronal and muscular degeneration caused by polyglutamine-expanded androgen receptors. Hum Mol Genet 24(2):314–329. doi: 10.1093/hmg/ddu445 PubMedCrossRefGoogle Scholar
  60. Irobi J, Almeida-Souza L, Asselbergh B, et al. (2010) Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet 19(16):3254–3265. doi: 10.1093/hmg/ddq234 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277(33):29936–29944. doi: 10.1074/jbc.M204733200 PubMedCrossRefGoogle Scholar
  62. Ishihara K, Yamagishi N, Saito Y, et al. (2003) Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278(27):25143–25150. doi: 10.1074/jbc.M302975200 PubMedCrossRefGoogle Scholar
  63. Iwata A, Christianson JC, Bucci M, et al. (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA 102:13135–13140PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99(18):11946–11950. doi: 10.1073/pnas.182296499 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jochum T, Ritz ME, Schuster C, et al. (2012) Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochim Biophys Acta 1822(6):1070–1078. doi: 10.1016/j.bbadis.2012.02.006 PubMedCrossRefGoogle Scholar
  66. Johnston JA, Illing ME, Kopito RR (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil Cytoskeleton 53(1):26–38. doi: 10.1002/cm.10057 PubMedCrossRefGoogle Scholar
  67. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH (2014) Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 7(4):421–434. doi: 10.1242/dmm.014563 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L (2008) Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107(2):339–350. doi: 10.1111/j.1471-4159.2008.05595.x PubMedCrossRefGoogle Scholar
  70. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Rev Mol Cell Biol 11(8):579–592. doi: 10.1038/nrm2941 CrossRefGoogle Scholar
  71. Katsuno M, Adachi H, Doyu M, et al. (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nature Med 9(6):768–773. doi: 10.1038/nm878 PubMedCrossRefGoogle Scholar
  72. Katsuno M, Adachi H, Kume A, et al. (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35(5):843–854PubMedCrossRefGoogle Scholar
  73. Katsuno M, Sang C, Adachi H, et al. (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. P Natl Acad Sci USA 102(46):16801–16806CrossRefGoogle Scholar
  74. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-Linked recessive Trait Neurology 18:671–680PubMedGoogle Scholar
  75. Kessel D (2006) Protection of Bcl-2 by salubrinal. Bioche Biophys Res Com 346(4):1320–1323. doi: 10.1016/j.bbrc.2006.06.056 CrossRefGoogle Scholar
  76. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10(4):402–405. doi: 10.1038/nm1021 PubMedCrossRefGoogle Scholar
  77. Klement IA, Skinner PJ, Kaytor MD, et al. (1998) Ataxin-1 nuclear localization and aggregation—role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95(1):41–53PubMedCrossRefGoogle Scholar
  78. Klionsky DJ, Abdalla FC, Abeliovich H, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kobayashi Y, Kume A, Li M, et al. (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275(12):8772–8778PubMedCrossRefGoogle Scholar
  80. Kondo N, Katsuno M, Adachi H, et al. (2013) Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Com 4:1405. doi: 10.1038/ncomms2417 CrossRefGoogle Scholar
  81. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530PubMedCrossRefGoogle Scholar
  82. Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2(11):E207–E209. doi: 10.1038/35041139 PubMedCrossRefGoogle Scholar
  83. Kumar R (2012) Role of androgen receptor polyQ chain elongation in Kennedy’s disease and use of natural osmolytes as potential therapeutic targets. IUBMB Life 64(11):879–884. doi: 10.1002/iub.1088 PubMedCrossRefGoogle Scholar
  84. Kwok AS, Phadwal K, Turner BJ, et al. (2011) HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. J Neurochem 119(6):1155–1161. doi: 10.1111/j.1471-4159.2011.07521.x PubMedCrossRefGoogle Scholar
  85. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79PubMedCrossRefGoogle Scholar
  86. Lambrechts D, Storkebaum E, Morimoto M, et al. (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34(4):383–394PubMedCrossRefGoogle Scholar
  87. Lee BH, Finley D, King RW (2012) A high-throughput screening method for identification of inhibitors of the deubiquitinating enzyme USP14. Curr Protoc Chem Biol 4(4):311–330. doi: 10.1002/9780470559277.ch120078 PubMedPubMedCentralGoogle Scholar
  88. Lee BH, Lee MJ, Park S, et al. (2010a) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184. doi: 10.1038/nature09299 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee JY, Koga H, Kawaguchi Y, et al. (2010b) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29(5):969–980. doi: 10.1038/emboj.2009.405 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li M, Chevalier-Larsen ES, Merry DE, Diamond MI (2007) Soluble androgen receptor oligomers underlie pathology in a mouse model of SBMA. J Biol Chem 282:3157–3164PubMedCrossRefGoogle Scholar
  91. Li M, Miwa S, Kobayashi Y, et al. (1998a) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44(2):249–254PubMedCrossRefGoogle Scholar
  92. Li M, Nakagomi Y, Kobayashi Y, et al. (1998b) Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. Am J Pathol 153(3):695–701PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lieberman AP, Yu Z, Murray S, et al. (2014) Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7(3):774–784. doi: 10.1016/j.celrep.2014.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi: 10.1038/nature05292 PubMedCrossRefGoogle Scholar
  95. Machado P, Brady S, Hanna MG (2013) Update in inclusion body myositis. Curr Opin Rheumatol 25(6):763–771. doi: 10.1097/01.bor.0000434671.77891.9a PubMedPubMedCentralCrossRefGoogle Scholar
  96. Malena A, Pennuto M, Tezze C, et al. (2013) Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 126(1):109–121. doi: 10.1007/s00401-013-1122-9 PubMedCrossRefGoogle Scholar
  97. Malik B, Nirmalananthan N, Bilsland LG, et al. (2011) Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum Mol Genet 20(9):1776–1786. doi: 10.1093/hmg/ddr061 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Malik B, Nirmalananthan N, Gray AL, La Spada AR, Hanna MG, Greensmith L (2013) Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 136(Pt 3):926–943. doi: 10.1093/brain/aws343 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Montague K, Malik B, Gray AL, et al. (2014) Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain 137(Pt 7):1894–1906. doi: 10.1093/brain/awu114 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Montie HL, Cho MS, Holder L, et al. (2009) Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 18(11):1937–1950. doi: 10.1093/hmg/ddp115 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Montie HL, Merry DE (2009) Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA. Autophagy 5(8):1194–1197PubMedCrossRefGoogle Scholar
  102. Montie HL, Pestell RG, Merry DE (2011) SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. J Neurosci 31(48):17425–17436. doi: 10.1523/JNEUROSCI.3958-11.2011 PubMedCrossRefGoogle Scholar
  103. Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP (2010) Native functions of the androgen receptor are essential to pathogenesis in a drosophila model of spinobulbar muscular atrophy. Neuron 67(6):936–952. doi: 10.1016/j.neuron.2010.08.034 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nihei Y, Ito D, Okada Y, et al. (2013) Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem. doi: 10.1074/jbc.M112.408211 Google Scholar
  105. Onesto E, Rusmini P, Crippa V, et al. (2011) Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis. J Neurochem 118(2):266–280. doi: 10.1111/j.1471-4159.2011.07298.x PubMedPubMedCentralCrossRefGoogle Scholar
  106. Orr CR, Montie HL, Liu Y, et al. (2010) An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. J Biol Chem 285(46):35567–35577. doi: 10.1074/jbc.M110.146845 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Palazzolo I, Gliozzi A, Rusmini P, et al. (2008) The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol 108(3–5):245–253. doi: 10.1016/j.jsbmb.2007.09.016 PubMedCrossRefGoogle Scholar
  108. Pandey UB, Nie Z, Batlevi Y, et al. (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863PubMedCrossRefGoogle Scholar
  109. Parfitt DA, Aguila M, McCulley CH, et al. (2014) The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis 5:e1236. doi: 10.1038/cddis.2014.214 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Piccioni F, Pinton P, Simeoni S, et al. (2002) Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J 16(11):1418–1420. doi: 10.1096/fj.01-1035fje PubMedGoogle Scholar
  111. Piccioni F, Simeoni S, Andriola I, et al. (2001) Polyglutamine tract expansion of the androgen receptor in a motoneuronal model of spinal and bulbar muscular atrophy. Brain Res Bull 56(3–4):215–220PubMedCrossRefGoogle Scholar
  112. Poletti A (2004) The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol 25(1):1–26. doi: 10.1016/j.yfrne.2004.03.001 PubMedCrossRefGoogle Scholar
  113. Poletti A, Negri-Cesi P, Martini L (2005) Reflections on the diseases linked to mutations of the androgen receptor. Endocrine 28(3):243–262. doi: 10.1385/ENDO:28:3:243 PubMedCrossRefGoogle Scholar
  114. Polo A, Teatini F, D’Anna S, et al. (1996) Sensory involvement in X-linked spino-bulbar muscular atrophy (Kennedy’s syndrome): an electrophysiological study. J Neurol 243(5):388–392PubMedCrossRefGoogle Scholar
  115. Pratt WB, Morishima Y, Gestwicki JE, Lieberman AP, Osawa Y (2014) A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases. Exp Biol Med 239(11):1405–1413. doi: 10.1177/1535370214539444 CrossRefGoogle Scholar
  116. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 38(1):17–28. doi: 10.1016/j.molcel.2010.02.029 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ranganathan S, Fischbeck KH (2010) Therapeutic approaches to spinal and bulbar muscular atrophy. Trends Pharmacol Sci 31(11):523–527. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rinaldi C, Bott LC, Fischbeck KH (2014) Muscle matters in Kennedy’s disease. Neuron 82(2):251–253. doi: 10.1016/j.neuron.2014.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rusmini P, Bolzoni E, Crippa V, et al. (2010) Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol Dis 40(2):361–369. doi: 10.1016/j.nbd.2010.06.016 PubMedCrossRefGoogle Scholar
  120. Rusmini P, Crippa V, Giorgetti E, et al. (2013) Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiol Aging 34(11):2585–2603. doi: 10.1016/j.neurobiolaging.2013.05.026 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rusmini P, Sau D, Crippa V, et al. (2007) Aggregation and proteasome: the case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy. Neurobiol Aging 28(7):1099–1111. doi: 10.1016/j.neurobiolaging.2006.05.015 PubMedCrossRefGoogle Scholar
  122. Rusmini P, Simonini F, Crippa V, et al. (2011) 17-AAG increases autophagic removal of mutant androgen receptor in spinal and bulbar muscular atrophy. Neurobiol Dis 41(1):83–95. doi: 10.1016/j.nbd.2010.08.023 PubMedCrossRefGoogle Scholar
  123. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95(1):55–66PubMedCrossRefGoogle Scholar
  124. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636. doi: 10.1038/nn.2297 PubMedCrossRefGoogle Scholar
  125. Seguin SJ, Morelli FF, Vinet J, et al. (2014) Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Diff. doi: 10.1038/cdd.2014.103 Google Scholar
  126. Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40(3):141–148. doi: 10.1016/j.tibs.2015.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Settembre C, Ballabio A (2011) TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy 7(11):1379–1381PubMedCrossRefGoogle Scholar
  128. Simeoni S, Mancini MA, Stenoien DL, et al. (2000) Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract. Hum Mol Genet 9(1):133–144PubMedCrossRefGoogle Scholar
  129. Sobue G, Hashizume Y, Mukai E, Hirayama M, Mitsuma T, Takahashi A (1989) X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112:209–232PubMedCrossRefGoogle Scholar
  130. Sopher BL, Thomas Jr PS, LaFevre-Bernt MA, et al. (2004) Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41(5):687–699PubMedCrossRefGoogle Scholar
  131. Soraru G, D’Ascenzo C, Polo A, et al. (2008) Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 264(1–2):100–105. doi: 10.1016/j.jns.2007.08.012 PubMedCrossRefGoogle Scholar
  132. Stenoien DL, Cummings CJ, Adams HP, et al. (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8(5):731–741PubMedCrossRefGoogle Scholar
  133. Storkebaum E, Lambrechts D, Dewerchin M, et al. (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92PubMedCrossRefGoogle Scholar
  134. Suzuki K, Katsuno M, Banno H, et al. (2008) CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA. Brain 131(1):229–239. doi: 10.1093/brain/awm289 PubMedCrossRefGoogle Scholar
  135. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. doi: 10.1038/sj.embor.7400779 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J (2014) The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 8:147. doi: 10.3389/fncel.2014.00147 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Takeyama K, Ito S, Yamamoto A, et al. (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35(5):855–864PubMedCrossRefGoogle Scholar
  138. Taylor JP, Tanaka F, Robitschek J, et al. (2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12:749–757PubMedCrossRefGoogle Scholar
  139. Thomas M, Dadgar N, Aphale A, et al. (2004) Androgen receptor acetylation site mutations cause trafficking defects, misfolding, and aggregation similar to expanded glutamine tracts. J Biol Chem 279(9):8389–8395PubMedCrossRefGoogle Scholar
  140. Thomas M, Harrell JM, Morishima Y, Peng HM, Pratt WB, Lieberman AP (2006) Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 15(11):1876–1883. doi: 10.1093/hmg/ddl110 PubMedCrossRefGoogle Scholar
  141. Thomas M, Yu Z, Dadgar N, et al. (2005) The unfolded protein response modulates toxicity of the expanded glutamine androgen receptor. J Biol Chem 280(22):21264–21271PubMedCrossRefGoogle Scholar
  142. Tohnai G, Adachi H, Katsuno M, et al. (2014) Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy. Hum Mol Genet 23(13):3552–3565. doi: 10.1093/hmg/ddu066 PubMedCrossRefGoogle Scholar
  143. Tokui K, Adachi H, Waza M, et al. (2009) 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 18(5):898–910. doi: 10.1093/hmg/ddn419 PubMedGoogle Scholar
  144. Vaccaro A, Patten SA, Aggad D (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75. doi: 10.1016/j.nbd.2013.03.015 PubMedCrossRefGoogle Scholar
  145. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574–13581. doi: 10.1523/JNEUROSCI.4099-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Vigh L, Literati PN, Horvath I, et al. (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3(10):1150–1154PubMedCrossRefGoogle Scholar
  147. Wang AM, Miyata Y, Klinedinst S, et al. (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9(2):112–118. doi: 10.1038/nchembio.1140 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Waza M, Adachi H, Katsuno M, et al. (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11(10):1088–1095PubMedCrossRefGoogle Scholar
  149. Waza M, Adachi H, Katsuno M, et al. (2006a) Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 84(8):635–646PubMedCrossRefGoogle Scholar
  150. Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Sobue G (2006b) Alleviating neurodegeneration by an anticancer agent: an Hsp90 inhibitor (17-AAG). Ann N Y Acad Sci 1086:21–34. doi: 10.1196/annals.1377.012 PubMedCrossRefGoogle Scholar
  151. Webb JL, Ravikumar B, Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36(12):2541–2550. doi: 10.1016/j.biocel.2004.02.003 PubMedCrossRefGoogle Scholar
  152. Whitaker HC, Hanrahan S, Totty N, et al. (2004) Androgen receptor is targeted to distinct subcellular compartments in response to different therapeutic antiandrogens. Clin Cancer Res 10(21):7392–7401PubMedCrossRefGoogle Scholar
  153. Xilouri M, Stefanis L (2015) Chaperone mediated autophagy to the rescue: a new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci. doi: 10.1016/j.mcn.2015.01.003 PubMedGoogle Scholar
  154. Yang YC, Fu HC, Hsiao BL, et al. (2013) Androgen receptor inclusions acquire GRP78/BiP to ameliorate androgen-induced protein misfolding stress in embryonic stem cells. Cell Death Dis 4:e607. doi: 10.1038/cddis.2013.122 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yoneda T, Imaizumi K, Oono K, et al. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940. doi: 10.1074/jbc.M010677200 PubMedGoogle Scholar
  156. Yu Z, Wang AM, Adachi H, et al. (2011) Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet 7(10):e1002321. doi: 10.1371/journal.pgen.1002321 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Paola Rusmini
    • 1
    • 6
  • Valeria Crippa
    • 2
  • Riccardo Cristofani
    • 1
    • 6
  • Carlo Rinaldi
    • 3
  • Maria Elena Cicardi
    • 1
    • 6
  • Mariarita Galbiati
    • 1
    • 6
  • Serena Carra
    • 4
  • Bilal Malik
    • 5
  • Linda Greensmith
    • 5
  • Angelo Poletti
    • 1
    • 6
    Email author
  1. 1.Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie NeurodegenerativeUniversità degli Studi di MilanoMilanItaly
  2. 2.Laboratory of Experimental NeurobiologyC. Mondino National Neurological InstitutePaviaItaly
  3. 3.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  4. 4.Dipartimento di Scienze Biomediche, Metaboliche e NeuroscienzeUniversità di Modena e Reggio EmiliaModenaItaly
  5. 5.The Graham Watts Laboratories for Research into Motor Neuron Disease, Sobell Department of Motor Neuroscience, MRC Centre for Neuromuscular DiseaseUCL Institute of NeurologyLondonUK
  6. 6.Centro InterUniversitario sulle Malattie NeurodegenerativeUniversità degli Studi di FirenzeMilanItaly

Personalised recommendations