Advertisement

Journal of Molecular Neuroscience

, Volume 57, Issue 4, pp 561–570 | Cite as

Indirubin-3-Oxime Effectively Prevents 6OHDA-Induced Neurotoxicity in PC12 Cells via Activating MEF2D Through the Inhibition of GSK3β

  • Shengquan Hu
  • Wei Cui
  • Zaijun Zhang
  • Shinghung Mak
  • Daping Xu
  • Gang Li
  • Yuanjia Hu
  • Yuqiang Wang
  • Mingyuen Lee
  • Karl Wahkeung Tsim
  • Yifan Han
Article

Abstract

Indirubin-3-oxime (I3O), a synthetic derivative of indirubin, was originally designed as potent inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3β (GSK3β) for leukemia therapy. In the current study, we have shown, for the first time, that I3O prevented 6-hydroxydopamine (6OHDA)-induced neuronal apoptosis and intracellular reactive oxygen species accumulation in PC12 cells in a concentration-dependent manner. GSK3β inhibitors but not CDK5 inhibitors reduced the neurotoxicity induced by 6OHDA. Moreover, the activation of GSK3β was observed after 6OHDA treatment. Furthermore, 6OHDA substantially decreased the transcriptional activity of myocyte enhancer factor 2D (MEF2D), a transcription factor that plays an important role in dopaminergic neuron survival, and reduced nuclear localized MEF2D expression. Interestingly, indirubin-3-oxime and GSK3β inhibitors prevented 6OHDA-induced dysregulation of MEF2D. In addition, short hairpin RNA-mediated decrease of MEF2D expression significantly abolished the neuroprotective effects of indirubin-3-oxime. Collectively, our results strongly suggested that indirubin-3-oxime prevented 6OHDA-induced neurotoxicity via activating MEF2D, possibly through the inhibition of GSK3β. In view of the capability of indirubin-3-oxime to cross the blood–brain barrier, our findings further indicated that indirubin-3-oxime might be a novel drug candidate for neurodegenerative disorders, including Parkinson’s disease in particular.

Keywords

Parkinson’s disease Indirubin-3-oxime MEF2D GSK3β 6OHDA Neuroprotection 

Abbreviations

CDKs

Cyclin-dependent kinases

CNS

Central nervous system

DCF

2′,7′-dichlorofluorescein

DCFH-DA

2′7′-dichlorodihydrofluorescein diacetate

DMEM

Dulbecco’s modified Eagle’s medium

FBS

Fetal bovine serum

GSK3β

Glycogen synthase kinase 3β

MEF2

Myocyte enhancer factor 2 indirubin-3-oxime I3O

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MTT

3(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide

PBS

Phosphate buffered saline

PD

Parkinson’s disease

ROS

reactive oxygen species

ShRNA

Short hairpin RNA

6OHDA

6-hydroxydopamine

Notes

Acknowledgments

This work was supported by grants from the Research Grants Council of Hong Kong (561011, 15101014), the Hong Kong Polytechnic University (G-SB10 and G-UC15), China Postdoctoral Science Foundation Grant (2015 M570753), the National Natural Science Foundation of China (81202510), Ningbo International Science and Technology Cooperation Project (No. 2014D10019), the Science and Technology Development Fund of Macao SAR (Ref. No. 134/2014/A3), and the Research Committee, University of Macau (Ref. No. MYRG2015-00214-ICMS-QRCM3).

Reference

  1. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214CrossRefPubMedGoogle Scholar
  2. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2:484–494PubMedCentralCrossRefPubMedGoogle Scholar
  3. Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegri C, Vilaplana J, Pallas M (2009) Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther 15:333–344CrossRefPubMedGoogle Scholar
  4. Chebel A, Kagialis-Girard S, Catallo R, Chien WW, Mialou V, Domenech C, Badiou C, Tigaud I, Ffrench M (2009) Indirubin derivatives inhibit malignant lymphoid cell proliferation. Leuk Lymphoma 50:2049–2060CrossRefPubMedGoogle Scholar
  5. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18:1162–1164CrossRefPubMedGoogle Scholar
  6. Cui W., Zhang Z., Li W., Mak S., Hu S., Zhang H., Yuan S., Rong J., Choi T. C., Lee S. M. and Han Y. (2012) Unexpected neuronal protection of SU5416 against 1-methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase. PLoS One 7, e46253.Google Scholar
  7. Cui W, Zhang ZJ, Hu SQ, Mak SH, Xu DP, Choi CL, Wang YQ, Tsim WK, Lee MY, Rong JH, Han YF (2014) Sunitinib produces neuroprotective effect via inhibiting nitric oxide overproduction. CNS Neurosci Ther 20:244–252CrossRefPubMedGoogle Scholar
  8. Cui W, Zhang Z, Li W, Hu S, Mak S, Zhang H, Han R, Yuan S, Li S, Sa F, Xu D, Lin Z, Zuo Z, Rong J, Ma ED, Choi TC, Lee SM, Han Y (2013) The anti-cancer agent SU4312 unexpectedly protects against MPP(+)-induced neurotoxicity via selective and direct inhibition of neuronal NOS. Br J Pharmacol 168:1201–1214PubMedCentralCrossRefPubMedGoogle Scholar
  9. Ding Y, Qiao A, Fan GH (2010) Indirubin-3′-monoxime rescues spatial memory deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiol Dis 39:156–168CrossRefPubMedGoogle Scholar
  10. Flavell SW, Cowan CW, Kim TK, Greer PL, Lin Y, Paradis S, Griffith EC, Hu LS, Chen C, Greenberg ME (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311:1008–1012CrossRefPubMedGoogle Scholar
  11. Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, Missale C (2006) Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol 69:805–812PubMedGoogle Scholar
  12. Gao L, She H, Li W, Zeng J, Zhu J, Jones DP, Mao Z, Gao G, Yang Q (2014) Oxidation of survival factor MEF2D in neuronal death and Parkinson’s disease. Antioxid Redox Signal 20:2936–2948PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gomez-Lazaro M, Galindo MF, Concannon CG, Segura MF, Fernandez-Gomez FJ, Llecha N, Comella JX, Prehn JH, Jordan J (2008) 6-hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104:1599–1612CrossRefPubMedGoogle Scholar
  14. Hu S, Wang R, Cui W, Zhang Z, Mak S, Xu D, Choi C, Tsim KW, Carlier PR, Lee M, Han Y (2014) Inhibiting beta-amyloid-associated Alzheimer’s pathogenesis in vitro and in vivo by a multifunctional dimeric bis(12)-hupyridone derived from its natural analogue. J Mol Neurosci 55:1014–1021CrossRefPubMedGoogle Scholar
  15. Hu SQ, Cui W, Xu DP, Mak SH, Tang J, Choi CL, Pang YP, Han YF (2013) Substantial neuroprotection against K+ deprivation-induced apoptosis in primary cerebellar granule neurons by novel dimer bis(propyl)-cognitin via the activation of VEGFR-2 signaling pathway. CNS Neurosci Ther 19:764–772CrossRefPubMedGoogle Scholar
  16. Jung HJ, Nam KN, Son MS, Kang H, Hong JW, Kim JW, Lee EH (2010) Indirubin-3′-oxime inhibits inflammatory activation of rat brain microglia. Neurosci Lett 487:139–143CrossRefPubMedGoogle Scholar
  17. Kim MK, Kim SC, Kang JI, Hyun JH, Boo HJ, Eun SY, Park DB, Yoo ES, Kang HK, Kang JH (2011) 6-hydroxydopamine-induced PC12 cell death is mediated by MEF2D down-regulation. Neurochem Res 36:223–231CrossRefPubMedGoogle Scholar
  18. Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Blumenfeld Z (2007) The neuroprotective effect of activin A and B: implication for neurodegenerative diseases. J Neurochem 103:962–971CrossRefPubMedGoogle Scholar
  19. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L (2001) Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276:251–260CrossRefPubMedGoogle Scholar
  20. Liao XM, Leung KN (2013) Indirubin-′-oxime induces mitochondrial dysfunction and triggers growth inhibition and cell cycle arrest in human neuroblastoma cells. Oncol Rep 29:371–379PubMedGoogle Scholar
  21. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790CrossRefPubMedGoogle Scholar
  22. Michel A., Downey P., Nicolas J. M. and Scheller D. (2014) Unprecedented therapeutic potential with a combination of A2A/NR2B receptor antagonists as observed in the 6-OHDA lesioned rat model of Parkinson’s disease. PLoS One 9, e114086.Google Scholar
  23. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661CrossRefPubMedGoogle Scholar
  24. She H, Yang Q, Shepherd K, Smith Y, Miller G, Testa C, Mao Z (2011) Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J Clin Invest 121:930–940PubMedCentralCrossRefPubMedGoogle Scholar
  25. Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, Vincent I, Wang X, Mao Z, Park DS (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26:440–447CrossRefPubMedGoogle Scholar
  26. Tobon-Velasco JC, Limon-Pacheco JH, Orozco-Ibarra M, Macias-Silva M, Vazquez-Victorio G, Cuevas E, Ali SF, Cuadrado A, Pedraza-Chaverri J, Santamaria A (2012) 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-kappaB factors. Toxicology 304:109–119CrossRefPubMedGoogle Scholar
  27. Wang B, Cai Z, Lu F, Li C, Zhu X, Su L, Gao G, Yang Q (2014) Destabilization of survival factor MEF2D mRNA by neurotoxin in models of Parkinson’s disease. J Neurochem 130:720–728CrossRefPubMedGoogle Scholar
  28. Wang W, Yang Y, Ying C, Li W, Ruan H, Zhu X, You Y, Han Y, Chen R, Wang Y, Li M (2007) Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 52:1678–1684CrossRefPubMedGoogle Scholar
  29. Wang X, She H, Mao Z (2009) Phosphorylation of neuronal survival factor MEF2D by glycogen synthase kinase 3beta in neuronal apoptosis. J Biol Chem 284:32619–32626PubMedCentralCrossRefPubMedGoogle Scholar
  30. Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z, Gao G, Liu X, Yuan H, Chen R, Huang S, Wang X, Zhu X, Wang X, Mao Z, Li M (2004) Indirubin-3′-oxime inhibits c-Jun NH2-terminal kinase: anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett 367:355–359CrossRefPubMedGoogle Scholar
  31. Xu H., Li Q., Yin Y., Lv C., Sun W., He B., Liu R., Chen X. and Bi K. Simultaneous determination of three alkaloids, four ginsenosides and limonin in the plasma of normal and headache rats after oral administration of Wu-Zhu-Yu decoction by a novel ultra fast liquid chromatography-tandem mass spectrometry method: application to a comparative pharmacokinetics and ethological study. J Mass Spectrom 48, 519–532.Google Scholar
  32. Yang Q, Mao Z (2010) Dysregulation of autophagy and Parkinson’s disease: the MEF2D link. Apoptosis 15:1410–1414CrossRefPubMedGoogle Scholar
  33. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z (2009) Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323:124–127PubMedCentralCrossRefPubMedGoogle Scholar
  34. Yao L, Li W, She H, Dou J, Jia L, He Y, Yang Q, Zhu J, Capiro NL, Walker DI, Pennell KD, Pang Y, Liu Y, Han Y, Mao Z (2012) Activation of transcription factor MEF2D by bis(3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects. J Biol Chem 287:34246–34255PubMedCentralCrossRefPubMedGoogle Scholar
  35. Zhang H, Mak S, Cui W, Li W, Han R, Hu S, Ye M, Pi R, Han Y (2011) Tacrine(2)-ferulic acid, a novel multifunctional dimer, attenuates 6-hydroxydopamine-induced apoptosis in PC12 cells by activating Akt pathway. Neurochem Int 59:981–988CrossRefPubMedGoogle Scholar
  36. Zhang L, Liu W, Szumlinski KK, Lew J (2012a) p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci U S A 109:20041–20046PubMedCentralCrossRefPubMedGoogle Scholar
  37. Zhang S, Zhang Y, Xu L, Lin X, Lu J, Di Q, Shi J, Xu J (2009) Indirubin-3′-monoxime inhibits beta-amyloid-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Neurosci Lett 450:142–146CrossRefPubMedGoogle Scholar
  38. Zhang Z, Cui W, Li G, Yuan S, Xu D, Hoi MP, Lin Z, Dou J, Han Y, Lee SM (2012b) Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCalpha and PI3K/AKT signaling pathways. J Agric Food Chem 60:8171–8182CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shengquan Hu
    • 1
    • 2
    • 3
  • Wei Cui
    • 1
    • 2
  • Zaijun Zhang
    • 3
  • Shinghung Mak
    • 1
    • 2
  • Daping Xu
    • 1
    • 2
  • Gang Li
    • 4
  • Yuanjia Hu
    • 5
  • Yuqiang Wang
    • 3
  • Mingyuen Lee
    • 5
  • Karl Wahkeung Tsim
    • 6
  • Yifan Han
    • 1
    • 2
  1. 1.Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
  3. 3.Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of PharmacyJinan UniversityGuangzhouChina
  4. 4.National Engineering Laboratory for Modern SilkCollege of Textile and Clothing Engineering, Soochow UniversitySuzhouChina
  5. 5.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacauChina
  6. 6.Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations