Journal of Molecular Neuroscience

, Volume 57, Issue 1, pp 28–37 | Cite as

The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation

  • Huimin Kong
  • Fei Yin
  • Fang He
  • Ahmed Omran
  • Linhong Li
  • Tianhui Wu
  • Ying Wang
  • Jing Peng
Article

Abstract

Astrocyte activation, associated with the release of pro-inflammatory cytokines interleukin 1-β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), is a hallmark of multiple brain diseases, including mesial temporal lobe epilepsy. In recent years, several microRNAs have emerged as important controllers of Toll-like receptor (TLR) signaling. In this study, we investigated the effect of miR-132, miR-146a, and miR-155 on myeloid-related protein-8 (MRP8) induced astrocyte-related inflammation. Using quantitative polymerase chain reaction (qPCR) and western blot, we found clear upregulation of TLR4 and downstream inflammatory cytokines, along with dysregulation of miR-132, miR-146a, and miR-155 in in vitro astrocytes after exposing them to different concentrations of MRP8. In addition, we focused on the effect of miR-132 on astrocyte-related inflammation induced by MRP8 via lentiviral infection then evaluated the expression of its possible target genes: acetylcholinesterase (AChE) and interleukin-1 receptor-associated kinase (IRAK4). Our results show that miR-132 is a negative feedback regulator of IL-1β and IL-6, but not TNF-α, by targeting IRAK4. Together, our findings demonstrate the novel role of TLR4-related microRNAs, especially miR-132, in the regulation of MRP8-induced astrocyte activation and highlight the importance of miR-132 in the modulation of innate immune response induced by endogenous ligands in neurological diseases.

Keywords

Astrocytes MicroRNA Inflammation MRP8 TLR4 

References

  1. Aronica E, Fluiter K, Iyer A et al (2010) Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 31:1100–1107CrossRefPubMedGoogle Scholar
  2. Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60:1258–1268CrossRefPubMedGoogle Scholar
  3. Ashhab MU, Omran A, Kong H et al (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51:950–958CrossRefPubMedGoogle Scholar
  4. Bala S, Marcos M, Kodys K et al (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444PubMedCentralCrossRefPubMedGoogle Scholar
  5. Berson A, Knobloch M, Hanan M et al (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109–119CrossRefPubMedGoogle Scholar
  6. Bicker S, Lackinger M, Weiß K, Schratt G (2014) MicroRNA-132, −134, and −138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 71:3987–4005CrossRefPubMedGoogle Scholar
  7. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  9. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374CrossRefPubMedGoogle Scholar
  10. Cheng HY, Papp JW, Varlamova O et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829PubMedCentralCrossRefPubMedGoogle Scholar
  11. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefPubMedGoogle Scholar
  12. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184CrossRefPubMedGoogle Scholar
  13. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190CrossRefPubMedGoogle Scholar
  14. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524PubMedCentralCrossRefPubMedGoogle Scholar
  15. Engel S, Schluesener H, Mittelbronn M et al (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 100:313–322CrossRefPubMedGoogle Scholar
  16. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRefPubMedGoogle Scholar
  17. Floris S, van der Goes A, Killestein J et al (2004) Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. J Neuroimmunol 148:172–177CrossRefPubMedGoogle Scholar
  18. Gan N, Yang L, Omran A et al (2014) Myoloid-related protein 8, an endogenous ligand of Toll-like receptor 4, is involved in epileptogenesis of mesial temporal lobe epilepsy via activation of the nuclear factor-kappaB pathway in astrocytes. Mol Neurobiol 49:337–351CrossRefPubMedGoogle Scholar
  19. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 48:1121–1132PubMedCentralCrossRefPubMedGoogle Scholar
  20. Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686CrossRefPubMedGoogle Scholar
  21. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hancock ML, Preitner N, Quan J, Flanagan JG (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 34:66–78PubMedCentralCrossRefPubMedGoogle Scholar
  23. Iyer A, Zurolo E, Prabowo A et al (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7:e44789PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jiang M, Xiang Y, Wang D et al (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11:29–40CrossRefPubMedGoogle Scholar
  25. Karpel R, Sternfeld M, Ginzberg D, Guhl E, Graessmann A, Soreq H (1996) Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem 66:114–123CrossRefPubMedGoogle Scholar
  26. Lagos D, Pollara G, Henderson S et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519CrossRefPubMedGoogle Scholar
  27. Li G, Bauer S, Nowak M et al (2011) Cytokines and epilepsy. Seizure 20:249–256CrossRefPubMedGoogle Scholar
  28. Maharshak N, Shenhar-Tsarfaty S, Aroyo N et al (2013) MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis 19:1346–1353CrossRefPubMedGoogle Scholar
  29. Nahid MA, Satoh M, Chan EK (2011a) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403PubMedCentralCrossRefPubMedGoogle Scholar
  30. Nahid MA, Satoh M, Chan EK (2011b) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186:1723–1734PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EK (2013) Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190:1250–1263PubMedCentralCrossRefPubMedGoogle Scholar
  32. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175CrossRefPubMedGoogle Scholar
  33. Olivieri F, Rippo MR, Prattichizzo F et al (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10:11PubMedCentralCrossRefPubMedGoogle Scholar
  34. Omran A, Peng J, Zhang C et al (2012) Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53:1215–1224CrossRefPubMedGoogle Scholar
  35. Omran A, Ashhab MU, Gan N, Kong H, Peng J, Yin F (2013) Effects of MRP8, LPS, and lenalidomide on the expressions of TNF-alpha, brain-enriched, and inflammation-related microRNAs in the primary astrocyte culture. ScientificWorldJournal 2013:208309PubMedCentralCrossRefPubMedGoogle Scholar
  36. O'Neill LA (2009) Boosting the brain's ability to block inflammation via microRNA-132. Immunity 31:854–855CrossRefPubMedGoogle Scholar
  37. Parker NR, Correia N, Crossley B, Buckland ME, Howell VM, Wheeler HR (2013) Correlation of microRNA 132 up-regulation with an unfavorable clinical outcome in patients with primary glioblastoma multiforme treated with radiotherapy plus concomitant and adjuvant temozolomide chemotherapy. Transl Oncol 6:742–748PubMedCentralCrossRefPubMedGoogle Scholar
  38. Pedersen IM, Otero D, Kao E et al (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha- dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295PubMedCentralCrossRefPubMedGoogle Scholar
  39. Peng J, Omran A, Ashhab MU et al (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50:291–297CrossRefPubMedGoogle Scholar
  40. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23:421–425CrossRefPubMedGoogle Scholar
  41. Scott HL, Tamagnini F, Narduzzo KE et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948PubMedCentralCrossRefPubMedGoogle Scholar
  42. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206CrossRefPubMedGoogle Scholar
  43. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefPubMedGoogle Scholar
  44. Shaked I, Meerson A, Wolf Y et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973CrossRefPubMedGoogle Scholar
  45. Shaltiel G, Hanan M, Wolf Y et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72PubMedCentralCrossRefPubMedGoogle Scholar
  46. Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39:398–404CrossRefPubMedGoogle Scholar
  47. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014:901902CrossRefGoogle Scholar
  48. Sklan EH, Lowenthal A, Korner M et al (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci U S A 101:5512–5517PubMedCentralCrossRefPubMedGoogle Scholar
  49. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647PubMedCentralCrossRefPubMedGoogle Scholar
  50. Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17:548–555CrossRefPubMedGoogle Scholar
  51. Sternfeld M, Shoham S, Klein O et al (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci U S A 97:8647–8652PubMedCentralCrossRefPubMedGoogle Scholar
  52. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486PubMedCentralCrossRefPubMedGoogle Scholar
  53. Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089CrossRefPubMedGoogle Scholar
  54. Tognini P, Pizzorusso T (2012) MicroRNA212/132 family: molecular transducer of neuronal function and plasticity. Int J Biochem Cell Biol 44:6–10CrossRefPubMedGoogle Scholar
  55. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296PubMedCentralCrossRefPubMedGoogle Scholar
  56. Vainas T, Stassen FR, Bruggeman CA et al (2006) Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. J Vasc Surg 44:326–332CrossRefPubMedGoogle Scholar
  57. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803CrossRefPubMedGoogle Scholar
  58. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21CrossRefPubMedGoogle Scholar
  59. Viemann D, Barczyk K, Vogl T et al (2007) MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood 109:2453–2460CrossRefPubMedGoogle Scholar
  60. Virtue A, Wang H, Yang XF (2012) MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 5:66PubMedCentralCrossRefPubMedGoogle Scholar
  61. Vogl T, Ludwig S, Goebeler M et al (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104:4260–4268CrossRefPubMedGoogle Scholar
  62. Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049CrossRefPubMedGoogle Scholar
  63. Xiao J, Li Y, Prandovszky E et al (2014) MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience 268:128–138PubMedCentralCrossRefPubMedGoogle Scholar
  64. Yonekawa K, Neidhart M, Altwegg LA et al (2011) Myeloid related proteins activate Toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis 218:486–492CrossRefPubMedGoogle Scholar
  65. Ziegler G, Prinz V, Albrecht MW et al (2009) Mrp-8 and −14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta 1792:1198–1204CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Huimin Kong
    • 1
  • Fei Yin
    • 1
    • 2
  • Fang He
    • 1
    • 2
  • Ahmed Omran
    • 1
  • Linhong Li
    • 1
  • Tianhui Wu
    • 1
  • Ying Wang
    • 1
  • Jing Peng
    • 1
    • 2
  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Hunan Intellectual and Developmental Disabilities Research Center of ChildrenHunanChina

Personalised recommendations