Journal of Molecular Neuroscience

, Volume 56, Issue 1, pp 113–121

Effects of Some Natural Carotenoids on TRPA1- and TRPV1-Induced Neurogenic Inflammatory Processes In Vivo in the Mouse Skin

  • Györgyi Horváth
  • Ágnes Kemény
  • Loránd Barthó
  • Péter Molnár
  • József Deli
  • Lajos Szente
  • Tamás Bozó
  • Szilárd Pál
  • Katalin Sándor
  • Éva Szőke
  • János Szolcsányi
  • Zsuzsanna Helyes
Article

Abstract

Mechanisms of the potent anti-inflammatory actions of carotenoids are unknown. Since carotenoids are incorporated into membranes, they might modulate transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1) activation predominantly on peptidergic sensory nerves. We therefore investigated the effects of three carotenoids (β-carotene, lutein and lycopene) on cutaneous neurogenic inflammation. Acute neurogenic edema and inflammatory cell recruitment were induced by smearing the TRPA1 agonist mustard oil (5 %) or the TRPV1 activator capsaicin (2.5 %) on the mouse ear. Ear thickness was then determined by micrometry, microcirculation by laser Doppler imaging and neutrophil accumulation by histopathology and spectrophotometric determination of myeloperoxidase activity. The effects of lutein on the stimulatory action of the TRPA1 agonist mustard oil were also tested on the guinea-pig small intestine, in isolated organ experiments. Mustard oil evoked 50–55 % ear edema and granulocyte influx, as shown by histology and myeloperoxidase activity. Swelling was significantly reduced between 2 and 4 h after administration of lutein or β-carotene (100 mg/kg subcutane three times during 24 h). Lutein also decreased neutrophil accumulation induced by TRPA1 activation, but did not affect mustard oil-evoked intestinal contraction. Lycopene had no effect on any of these parameters. None of the three carotenoids altered capsaicin-evoked inflammation. It is proposed that the dihydroxycarotenoid lutein selectively inhibits TRPA1 activation and consequent neurogenic inflammation, possibly by modulating lipid rafts.

Keywords

Mustard oil Transient receptor potential (TRP) vanilloid 1 ion channel (TRPV1) TRPA1 receptor Carotenoids Skin inflammation Intestinal contraction Lipid rafts 

References

  1. Bánvölgyi Á, Pozsgai G, Brain SD et al (2004) Mustard oil induces a transient receptor potential vanilloid 1 receptor-independent neurogenic inflammation and a non-neurogenic cellular inflammatory component in mice. Neurosci 125:449–459CrossRefGoogle Scholar
  2. Barthó L, Szolcsányi J (1978) The site of action of capsaicin on the guinea-pig isolated ileum. Naunyn-Schmiedeb Arch Pharmacol 305:75–81CrossRefGoogle Scholar
  3. Barthó L, Lénárd L Jr, Patacchini R, Halmai V, Wilhelm M, Holzer P, Maggi CA (1999) Tachykinin receptors are involved in the “local efferent” motor response to capsaicin in the guinea-pig small intestine and oesophagus. Neurosci 90:221–228CrossRefGoogle Scholar
  4. Barthó L, Benkó R, Patacchini R et al (2004) Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. Eur J Pharmacol 500:143–157CrossRefPubMedGoogle Scholar
  5. Barthó L, Nordtveit E, Szombati V, Benko R (2013) Purinoceptor-mediated, capsaicin-resistant excitatory effect of allyl isothiocyanate on neurons of the guinea-pig small intestine. Basic Clin Pharmacol Toxicol 113:141–143CrossRefPubMedGoogle Scholar
  6. Bhatt DL (2008) Anti-inflammatory agents and antioxidants as a possible “Third Great Wave” in cardiovascular secondary prevention. Am J Cardiol 101:4D–13DCrossRefPubMedGoogle Scholar
  7. Britton G (1995) Procedure: isolation of carotenes from tomato fruit. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 1A. Birkhäuser Verlag, Basel, pp 210–213Google Scholar
  8. Britton G (2008) Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 4. Birkhäuser Verlag, Basel, pp 206–207CrossRefGoogle Scholar
  9. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids today and challenges for the future. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 1A. Birkhäuser Verlag, Basel, pp 13–26Google Scholar
  10. Britton G, Liaaen-Jensen S, Pfander H (2008) Special molecules, special properties. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 4. Birkhäuser Verlag, Basel, pp 1–6CrossRefGoogle Scholar
  11. Cevikbas F, Steinhoff A, Homey B, Steinhoff M (2007) Neuroimmune interactions in allergic skin diseases. Curr Opin Allergy Clin Immunol 7(5):365–373CrossRefPubMedGoogle Scholar
  12. Geppetti P, Materazzi S, Nicoletti P (2006) The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol 533(1–3):207–214CrossRefPubMedGoogle Scholar
  13. Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6CrossRefPubMedGoogle Scholar
  14. Helyes Z, Pintér E, Németh J, Szolcsányi J (2003) Pharmacological targets for the inhibition of neurogenic inflammation. AIAAA in Curr Med Chem 2:191–218Google Scholar
  15. Helyes Z, Pintér E, Szolcsányi J (2009) Regulatory role of sensory neuropeptides in inflammation. In: Kovács M, Merchenthaler I (eds) Neuropeptides and peptide analogs, vol. 7. Research Signpost, Kerala, pp 111–141Google Scholar
  16. Horváth G, Molnár P, Farkas Á et al (2010) Separation and identification of carotenoids in flowers of Chelidonium majus L. and inflorescences of Solidago canadensis L. Chromatographia 71:S103–S108CrossRefGoogle Scholar
  17. Horváth G, Szőke É, Kemény Á et al (2012) Lutein inhibits the function of the transient receptor potential A1 ion channel in different in vitro and in vivo models. J Mol Neurosci 46(1):1–9CrossRefPubMedGoogle Scholar
  18. Johnson EJ, Krinsky NI (2009) Carotenoids and coronary heart disease. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 1A. Birkhäuser Verlag, Basel, pp 287–300CrossRefGoogle Scholar
  19. Krinsky NI (1998) The antioxidant and biological properties of the carotenoids. Annu NY Acad Sci 854:443–447CrossRefGoogle Scholar
  20. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516CrossRefGoogle Scholar
  21. Mayne ST, Wright ME, Cartmel B (2009) Epidemiology and intervention trials. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 5. Birkhäuser Verlag, Basel, pp 191–210CrossRefGoogle Scholar
  22. McNulty H, Byun J, Lockwood SF et al (2007) Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta 1768:167–174CrossRefPubMedGoogle Scholar
  23. McNulty H, Jacob RF, Mason RP (2008) Biologic activity of carotenoids related to distinct membrane physicochemical interactions. Am J Cardiol 101:20D–29DCrossRefPubMedGoogle Scholar
  24. Molnár P, Kawase M, Motohashi N (2005) Isolation, crystallization and handling of carotenoids and (E/Z)-isomerization of carotenoids. In: Motohashi N (ed) Functional polyphenols and carotenoids with antioxidative action, a review book series of Chem. Pharm. Sci. RSFLASH, Kerala, pp 111–131Google Scholar
  25. Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168CrossRefPubMedGoogle Scholar
  26. Palozza P, Serini S, Ameruso M, Verdecchia S (2009) Modulation of intracellular signalling pathways by carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 5. Birkhäuser Verlag, Basel, pp 211–234CrossRefGoogle Scholar
  27. Pashkow FJ, Watumull DG, Campbell CL (2008) Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101:58D–68DCrossRefPubMedGoogle Scholar
  28. Pozsgai G, Hajna Z, Bagoly T (2012) The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation. Eur J Pharmacol 689(1–3):56–64CrossRefPubMedGoogle Scholar
  29. Quasim T, McMillan DC, Talwar D (2003) Lower concentrations of carotenoids in the critically-ill patient are related to a systemic inflammatory response and increased lipid peroxidation. Clin Nutr 22(5):459–462CrossRefPubMedGoogle Scholar
  30. Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 1A. Birkhäuser Verlag, Basel, pp 109–144Google Scholar
  31. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  32. Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53CrossRefGoogle Scholar
  33. Szőke É, Börzsei R, Tóth DM et al (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628(1–3):67–74CrossRefPubMedGoogle Scholar
  34. Szolcsányi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38(6):377–384CrossRefPubMedGoogle Scholar
  35. Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110CrossRefPubMedGoogle Scholar
  36. Yaping Z, Wenli Y, Weile H, Ying Y (2003) Anti-inflammatory and anticoagulant activities of lycopene in mice. Nutr Res 23(11):1591–1595CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Györgyi Horváth
    • 1
  • Ágnes Kemény
    • 2
    • 6
  • Loránd Barthó
    • 2
  • Péter Molnár
    • 1
  • József Deli
    • 1
  • Lajos Szente
    • 3
  • Tamás Bozó
    • 4
  • Szilárd Pál
    • 5
  • Katalin Sándor
    • 2
  • Éva Szőke
    • 2
    • 6
  • János Szolcsányi
    • 2
  • Zsuzsanna Helyes
    • 2
    • 6
  1. 1.Department of Pharmacognosy, Medical SchoolUniversity of PécsPécsHungary
  2. 2.Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
  3. 3.CycloLab Ltd.BudapestHungary
  4. 4.Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
  5. 5.Institute of Pharmaceutical Technology and Biopharmacy, Medical SchoolUniversity of PécsPécsHungary
  6. 6.Szentágothai Research CentreUniversity of PécsPécsHungary

Personalised recommendations