Journal of Molecular Neuroscience

, Volume 55, Issue 1, pp 7–20 | Cite as

The Effects of Histone Deacetylase Inhibitors on Glioblastoma-Derived Stem Cells

  • Angel A. Alvarez
  • Melvin Field
  • Sergey Bushnev
  • Matthew S. Longo
  • Kiminobu SugayaEmail author


Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited effective treatment options. Cancer stem cells (CSCs), a subpopulation of cancer cells with stem cell properties found in GBMs, have been shown to be extremely resistant to radiation and chemotherapeutic agents and have the ability to readily reform tumors. Therefore, the development of therapeutic agents targeting CSCs is extremely important. In this study, we isolated glioblastoma-derived stem cells (GDSCs) from GBM tissue removed from patients during surgery and analyzed their gene expression using quantitative real-time PCR and immunocytochemistry. We examined the effects of histone deacetylase inhibitors trichostatin A (TSA) and valproic acid (VPA) on the proliferation and gene expression profiles of GDSCs. The GDSCs expressed significantly higher levels of both neural and embryonic stem cell markers compared to GBM cells expanded in conventional monolayer cultures. Treatment of GDSCs with histone deacetylase inhibitors, TSA and VPA, significantly reduced proliferation rates of the cells and expression of the stem cell markers, indicating differentiation of the cells. Since differentiation into GBM makes them susceptible to the conventional cancer treatments, we posit that use of histone deacetylase inhibitors may increase efficacy of the conventional cancer treatments for eliminating GDSCs.


Glioblastoma multiforme Cancer stem cells Histone deactylation Trichostatin A 


  1. Aerts JL, Gonzales MI, Topalian SL (2004) Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. BioTech 36(1):84-86, 88, 90-81.Google Scholar
  2. Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R, Alvarez L, Guzman M, Galve-Roperh I (2007) Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem 282(9):6854–6862PubMedCrossRefGoogle Scholar
  3. Annabi B, Lachambre MP, Plouffe K, Sartelet H, Beliveau R (2009a) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48(10):910–919PubMedCrossRefGoogle Scholar
  4. Annabi B, Laflamme C, Sina A, Lachambre MP, Beliveau R (2009b) A MT1-MMP/NF-kappaB signaling axis as a checkpoint controller of COX-2 expression in CD133+ U87 glioblastoma cells. J Neuroinflammation 6:8PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRefGoogle Scholar
  6. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015PubMedCrossRefGoogle Scholar
  7. Besser D (2004) Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 279(43):45076–45084PubMedCrossRefGoogle Scholar
  8. Bigner DD, Bigner SH, Ponten J, Westermark B, Mahaley MS, Ruoslahti E, Herschman H, Eng LF, Wikstrand CJ (1981) Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40(3):201–229PubMedCrossRefGoogle Scholar
  9. Brannen CL, Sugaya K (2000) In vitro differentiation of multipotent human neural progenitors in serum-free medium. Neuroreport 11(5):1123–1128PubMedCrossRefGoogle Scholar
  10. Breier JM, Radio NM, Mundy WR, Shafer TJ (2008) Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells. Toxicol Sci 105(1):119–133Google Scholar
  11. Chambers I, Colby D, Robertson M et al (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655PubMedCrossRefGoogle Scholar
  12. Chuang H, Chen C et al (2011) Reduced expression of TRF1 is associated with tumor progression and poor prognosis in oral squamous cell carcinoma. Exp Therapuetic Med 2(1):63–67Google Scholar
  13. Cikos S, Bukovska A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8:113PubMedCentralPubMedCrossRefGoogle Scholar
  14. Das A, Banik NL, Ray SK (2008) Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neuro-Oncol 87(1):9–22CrossRefGoogle Scholar
  15. De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S (2008) The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27(14):2091–2096PubMedCrossRefGoogle Scholar
  16. Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, Edwards FA, Sinden JD (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36Google Scholar
  17. Estes ML, Ransohoff RM, McMahon JT, Jacobs BS, Barna BP (1990) Characterization of adult human astrocytes derived from explant culture. J Neurosci Res 27(4):697–705PubMedCrossRefGoogle Scholar
  18. Field M, Alvarez A, Bushnev S, Sugaya K (2010) Embryonic stem cell markers distinguishing cancer stem cells from normal human neuronal stem cell populations in malignant glioma patients. Clin Neurosurg 57:151–159 [serial online]PubMedGoogle Scholar
  19. Fine HA, Dear KB, Loeffler JS, Black PM, Canellos GP (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71(8):2585–2597PubMedCrossRefGoogle Scholar
  20. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004a) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRefGoogle Scholar
  21. Galli R, Binda E, Orfanelli U (2004b) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  22. Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG (1998) Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res 58(17):3957–3964PubMedGoogle Scholar
  23. Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27(20):2897–2909PubMedCrossRefGoogle Scholar
  24. Guthrie GD, Eljamel S (2013) Impact of particular antiepileptic drugs on the survival of patients with glioblastoma multiforme. J Neurosurg 118(4):859–865PubMedCrossRefGoogle Scholar
  25. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183PubMedCentralPubMedCrossRefGoogle Scholar
  26. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284PubMedCrossRefGoogle Scholar
  27. Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res 18(2B):1303–1311PubMedGoogle Scholar
  28. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol (Zurich, Switzerland) 9(3):469–479CrossRefGoogle Scholar
  29. Jeanmougin M, de Reynies A, Marisa L, Paccard C, Nuel G, Guedj M (2010) Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies. PLoS ONE 5(9):e12336PubMedCentralPubMedCrossRefGoogle Scholar
  30. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261PubMedCrossRefGoogle Scholar
  31. Kang MK, Hur BI, Ko MH, Kim CH, Cha SH, Kang SK (2008) Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci 9:15PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kim J, Chu J, Shen X et al (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061PubMedCrossRefGoogle Scholar
  33. Kim JB, Sebastiano V, Wu GM et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419PubMedCrossRefGoogle Scholar
  34. Kwak YD, Brannen CL, Qu T, Kim HM, Dong X, Soba P, Majumdar A, Kaplan A, Beyreuther K, Sugaya K (2006a) Amyloid precursor protein regulates differentiation of human neural stem cells. Stem Cells Dev 15(3):381–389PubMedCrossRefGoogle Scholar
  35. Kwak YD, Choumkina E, Sugaya K (2006b) Amyloid precursor protein is involved in staurosporine induced glial differentiation of neural progenitor cells. Biochem Biophys Res Commun 344(1):431–437PubMedCrossRefGoogle Scholar
  36. La Torre D, de Divitiis O, Conti A, Angileri FF, Cardali S, Aguennouz M, Aragona M, Panetta S, DAvella D, Vita G et al (2005) Expression of telomeric repeat binding factor-1 in astroglial brain tumors. Neurosurgery 56(4):802–810PubMedCrossRefGoogle Scholar
  37. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198PubMedCrossRefGoogle Scholar
  38. Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, Lillehei KO, Bernstein M, Brem H, Sloan A et al (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99(3):467–473PubMedCrossRefGoogle Scholar
  39. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403PubMedCrossRefGoogle Scholar
  40. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCentralPubMedCrossRefGoogle Scholar
  41. Liu Q et al (2009) Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neuro-Oncol 94(1):1–19CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, California) 25(4):402–408CrossRefGoogle Scholar
  43. Loo DT, Althoen MC, Cotman CW (1995) Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity. J Neurosci Res 42(2):184–191PubMedCrossRefGoogle Scholar
  44. Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M (2007) Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. Int J Radiat Oncol Biol Phys 69(1):214–220PubMedCrossRefGoogle Scholar
  45. Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, Privat A, Hugnot JP (2003) The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci 24(1):198–213PubMedCrossRefGoogle Scholar
  46. Masoudi A et al (2008) Influence of valporic acid on outcome of high-grade gliomas in children. Anticancer Res 28(4C):2437–2442PubMedGoogle Scholar
  47. McKeever PE, Hood TW, Varani J, Taren JA, Beierwaltes WH, Wahl R, Liebert M, Nguyen PK (1987) Products of cells cultured from gliomas. V. Cytology and morphometry of two cell types cultured from glioma. J Natl Cancer Inst 78(1):75–84PubMedGoogle Scholar
  48. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024PubMedCrossRefGoogle Scholar
  49. Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma. Cancer Investig:1Google Scholar
  50. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67(12):5727–5736PubMedCrossRefGoogle Scholar
  51. Postovit LM, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, Wheaton WW, Abbott DE, Seftor RE, Hendrix MJ (2008) Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci U S A 105(11):4329–4334PubMedCentralPubMedCrossRefGoogle Scholar
  52. Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT et al (2009): Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer lettGoogle Scholar
  53. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984PubMedCrossRefGoogle Scholar
  54. Rieu I, Powers SJ (2009) Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21(4):1031–1033PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rutka JT, Giblin JR, Dougherty DY, Liu HC, McCulloch JR, Bell CW, Stern RS, Wilson CB, Rosenblum ML (1987) Establishment and characterization of five cell lines derived from human malignant gliomas. Acta Neuropathol 75(1):92–103PubMedCrossRefGoogle Scholar
  56. Rychlik W (2007) OLIGO 7 primer analysis software. Methods in molecular biology (Clifton, NJ) 402:35–60CrossRefGoogle Scholar
  57. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54(8):850–860PubMedCrossRefGoogle Scholar
  58. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46(1–2):69–81PubMedCrossRefGoogle Scholar
  59. Shervington A, Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Investig 26(5):535–542CrossRefGoogle Scholar
  60. Simpson JR, Horton J, Scott C, Curran WJ, Rubin P, Fischbach J, Isaacson S, Rotman M, Asbell SO, Nelson JS et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26(2):239–244PubMedCrossRefGoogle Scholar
  61. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  62. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004a) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRefGoogle Scholar
  63. Singh SK, Clarke ID, Hide T, Dirks PB (2004b) Cancer stem cells in nervous system tumors. Oncogene 23(43):7267–7273PubMedCrossRefGoogle Scholar
  64. Singh SK, Hawkins C, Clarke ID et al (2004c) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  65. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313(1):107–117PubMedCrossRefGoogle Scholar
  66. Student (1908) The probable error of a mean. Biometrika, 6(1):1-25.Google Scholar
  67. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R, Pizzolato G, Miralbell R et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20(5):1375–1382PubMedCrossRefGoogle Scholar
  68. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  69. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85(2):141–152PubMedCrossRefGoogle Scholar
  70. Tabibzadeh S, Hemmati-Brivanlou A (2006) Lefty at the crossroads of “stemness” and differentiative events. Stem Cells (Dayton, Ohio) 24(9):1998–2006CrossRefGoogle Scholar
  71. Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H, Tanaka S (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18(10):1037–1046PubMedCrossRefGoogle Scholar
  72. Tait MJ, Petrik V, Loosemore A, Bell BA, Papadopoulos MC (2007) Survival of patients with glioblastoma multiforme has not improved between 1993 and 2004: analysis of 625 cases. Br J Neurosurg 21(5):496–500PubMedCrossRefGoogle Scholar
  73. Tsai HC et al (2012) Effect of valproic acid on the outcome of glioblastoma multiforme. Br J Neurosurg 26(3):347–354PubMedCrossRefGoogle Scholar
  74. van den Bent MJ, Hegi ME, Stupp R (2006) Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42(5):582–588PubMedCrossRefGoogle Scholar
  75. Vlassenbroeck I, Califice S, Diserens AC, Migliavacca E, Straub J, Di Stefano I, Moreau F, Hamou MF, Renard I, Delorenzi M et al (2008) Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J Mol Diagn 10(4):332–337PubMedCentralPubMedCrossRefGoogle Scholar
  76. Vrotsos EG, Sugaya K (2009) MCP-1-induced migration of NT2 neuroprogenitor cells involving APP signaling. Cell Mol Neurobiol 29(3):373–381PubMedCrossRefGoogle Scholar
  77. Vrotsos EG, Kolattukudy PE, Sugaya K (2009) MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 79(2):97–103PubMedCentralPubMedCrossRefGoogle Scholar
  78. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5(10):1725–1731PubMedCrossRefGoogle Scholar
  79. Wang J, Wang X, Jiang S, Lin P, Zhang J, Wu Y, Xiong Z, Ren JJ, Yang H (2007) Establishment of a new human glioblastoma multiforme cell line (WJ1) and its partial characterization. Cell Mol Neurobiol 27(7):831–843PubMedCrossRefGoogle Scholar
  80. Wang K, Chen Y et al (2009) Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells.Cloning. Stem Cells 11(4):483–496Google Scholar
  81. Welch BL (1938) The significance of the difference between two means when the population variances are unequal. Biometrika 29(3/4):350–362CrossRefGoogle Scholar
  82. Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(1/2):28–35PubMedCrossRefGoogle Scholar
  83. Yao XH, Ping YF, Chen JH, Xu CP, Chen DL, Zhang R, Wang JM, Bian XW (2008) Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR. J Pathol 215(4):369–376PubMedCrossRefGoogle Scholar
  84. Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265(1):124–134PubMedCrossRefGoogle Scholar
  85. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004a) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400PubMedCrossRefGoogle Scholar
  86. Yuan X, Curtin J, Xiong Y et al (2004b) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  87. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinforma 7:85CrossRefGoogle Scholar
  88. Zhang QB, Ji XY, Huang Q, Dong J, Zhu YD, Lan Q (2006) Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res 16(12):909–915PubMedCrossRefGoogle Scholar
  89. Zimmerman DW (2004) A note on preliminary tests of equality of variances. Br J Math Stat Psychol 57(Pt 1):173–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Angel A. Alvarez
    • 1
  • Melvin Field
    • 1
  • Sergey Bushnev
    • 1
  • Matthew S. Longo
    • 1
  • Kiminobu Sugaya
    • 1
    Email author
  1. 1.University of Central FloridaOrlandoUSA

Personalised recommendations