Journal of Molecular Neuroscience

, Volume 53, Issue 2, pp 183–188 | Cite as

Sequence Variants in SLC6A3, DRD2, and BDNF Genes and Time to Levodopa-Induced Dyskinesias in Parkinson’s Disease

  • Natalie Kaplan
  • Aya Vituri
  • Amos D. Korczyn
  • Oren S. Cohen
  • Rivka Inzelberg
  • Gilad Yahalom
  • Evgenia Kozlova
  • Roni Milgrom
  • Yael Laitman
  • Eitan Friedman
  • Saharon Rosset
  • Sharon Hassin-Baer
Article

Abstract

Levodopa-induced dyskinesias (LID) present a common but elusive complication of levodopa therapy in Parkinson’s disease (PD). In order to identify genetic factors associated with LID, 352 (213 males) levodopa-treated Israeli PD patients were genotyped for 34 polymorphisms within three candidate genes affecting dopaminergic activity and synaptic plasticity: dopamine transporter gene (DAT1 or SLC6A3) [14 single nucleotide polymorphisms (SNPs) and 40-bp variable number tandem repeat (VNTR)], DRD2 [11 SNPs and dinucleotide CA short tandem repeat (STR)], and BDNF (7 SNPs). A comparison of patients with and without LID was performed by applying a time-oriented approach, with survival analyses evaluating LID development hazard rate over time [Cox proportional hazards and accelerated failure time (AFT) lognormal models]. Overall, 192 (54.5 %) participants developed LID, with a mean latency of 5.0 (±4.5) years. After adjusting for gender, age at PD onset, duration of symptoms prior to levodopa exposure, and multiple testing correction, one SNP in SLC6A3 (with 81 % genotyping success) was significantly associated with LID latency: the C allele of the rs393795 extended the time to LID onset, time ratio = 4.96 (95 % CI, 2.3–10.9; p = 4.1 × 10−5). This finding should be validated in larger, ethnically diverse PD populations, and the biological mechanism should be explored.

Keywords

Levodopa-induced dyskinesias (LID) Parkinson’s disease Single nucleotide polymorphism (SNP) Dopamine transporter gene (SLC6A3DRD2 BDNF 

References

  1. Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2(8):577–588PubMedCrossRefGoogle Scholar
  2. Bialecka M, Drozdzik M, Klodowska-Duda G et al (2004) The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol Scand 110(4):260–266PubMedCrossRefGoogle Scholar
  3. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298PubMedCrossRefGoogle Scholar
  4. Cummins TDR, Hawi Z, Hocking J (2012) Dopamine transporter genotype predicts behavioural and neural measures of response inhibition. Mol Psychiatry 17(11):1086–1092PubMedCrossRefGoogle Scholar
  5. de la Fuente-Fernández R, Sossi V, Huang Z et al (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127(Pt 12):2747–2754PubMedCrossRefGoogle Scholar
  6. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269PubMedCrossRefGoogle Scholar
  7. Foltynie T, Cheeran B, Williams-Gray CH et al (2009) BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 80(2):141–144PubMedCrossRefGoogle Scholar
  8. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1(2):152–156PubMedCrossRefGoogle Scholar
  9. Hassin-Baer S, Molchadski I, Cohen OS et al (2011) Gender effect on time to levodopa-induced dyskinesias. J Neurol 258(11):2048–2053PubMedCrossRefGoogle Scholar
  10. Hauser RA, McDermott MP, Messing S (2006) Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 63(12):1756–1760PubMedCrossRefGoogle Scholar
  11. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184PubMedCentralPubMedCrossRefGoogle Scholar
  12. Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(Suppl 11):S11–S16PubMedCrossRefGoogle Scholar
  13. Kaiser R, Hofer A, Grapengiesser A et al (2003) L-Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 60(11):1750–1755PubMedCrossRefGoogle Scholar
  14. Khor SP, Hsu A (2007) The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol 2(3):234–243PubMedCrossRefGoogle Scholar
  15. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3(9):1452–1456PubMedCrossRefGoogle Scholar
  16. Korczyn AD (2011) Is there a need to redefine Parkinson’s disease? J Neurol Sci 310(1–2):2–3PubMedCrossRefGoogle Scholar
  17. Kurian MA, Li Y, Zhen J et al (2011) Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 10(1):54–62PubMedCrossRefGoogle Scholar
  18. Lee JY, Cho J, Lee EK, Park SS, Jeon BS (2011) Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord 26(1):73–79PubMedCrossRefGoogle Scholar
  19. Molchadski I, Korczyn AD, Cohen OS et al (2011) The role of apolipoprotein E polymorphisms in levodopa-induced dyskinesia. Acta Neurol Scand 123(2):117–121PubMedCrossRefGoogle Scholar
  20. Morgante F, Espay AJ, Gunraj C, Lang AE, Chen R (2006) Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 129(Pt 4):1059–1069PubMedCrossRefGoogle Scholar
  21. Muenter MD, Tyce GM (1971) L-Dopa therapy of Parkinson’s disease: plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clin Proc 46(4):231–239PubMedGoogle Scholar
  22. Nutt JG (2001) Motor fluctuations and dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 8(2):101–108PubMedCrossRefGoogle Scholar
  23. Oeth P, Beaulieu M, Park C et al (2005) iPLEX™ assay: increased plexing efficiency and flexibility for MassARRAY® system through single base primer extension with mass-modified terminators [Sequenom application note]. Sequenom, San DiegoGoogle Scholar
  24. Oliveri RL, Annesi G, Zappia M et al (1999) Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology 53(7):1425–1430PubMedCrossRefGoogle Scholar
  25. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study group. N Engl J Med 342(20):1484–1491PubMedCrossRefGoogle Scholar
  26. Sossi V, de la Fuente-Fernández R, Schulzer M, Troiano AR, Ruth TJ, Stoessl AJ (2007) Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol 62(5):468–474PubMedCrossRefGoogle Scholar
  27. Strong JA, Dalvi A, Revilla FJ et al (2006) Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 21(5):654–659PubMedCrossRefGoogle Scholar
  28. Talkowski ME, McCann KL, Chen M et al (2010) Fine-mapping reveals novel alternative splicing of the dopamine transporter. Am J Med Genet B Neuropsychiatr Genet 153B(8):1434–1447PubMedCrossRefGoogle Scholar
  29. Uhl GR (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and Parkinsonism. Mov Disord 18(Suppl 7):S71–S80PubMedCrossRefGoogle Scholar
  30. van Munster BC, Yazdanpanah M, Tanck MW et al (2010) Genetic polymorphisms in the DRD2, DRD3, and SLC6A3 gene in elderly patients with delirium. Am J Med Genet B Neuropsychiatr Genet 153B(1):38–45PubMedGoogle Scholar
  31. Wei LJ (1992) The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat Med 11(14–15):1871–1879PubMedCrossRefGoogle Scholar
  32. Yahalom G, Kaplan N, Vituri A et al (2012) Dyskinesias in patients with Parkinson’s disease: effect of the leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. Parkinsonism Relat Disord 18(9):1039–1041PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Natalie Kaplan
    • 1
    • 3
  • Aya Vituri
    • 4
  • Amos D. Korczyn
    • 5
  • Oren S. Cohen
    • 1
    • 3
  • Rivka Inzelberg
    • 1
    • 3
  • Gilad Yahalom
    • 1
  • Evgenia Kozlova
    • 1
  • Roni Milgrom
    • 2
  • Yael Laitman
    • 2
  • Eitan Friedman
    • 2
    • 3
  • Saharon Rosset
    • 4
  • Sharon Hassin-Baer
    • 1
    • 3
  1. 1.The Parkinson Disease and Movement Disorders Clinic, Department of Neurology and Sagol Neuroscience CenterChaim Sheba Medical CenterRamat GanIsrael
  2. 2.The Susanne-Levy Gertner Oncogenetics Unit, The Institute of Human GeneticsChaim Sheba Medical CenterRamat GanIsrael
  3. 3.The Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  4. 4.The School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  5. 5.The Sieratzki Chair of NeurologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations