Journal of Molecular Neuroscience

, Volume 54, Issue 1, pp 78–91 | Cite as

Changes in Thyroid Hormone Receptors After Permanent Cerebral Ischemia in Male Rats

  • Athanasios Lourbopoulos
  • Iordanis Mourouzis
  • Theodoros Karapanayiotides
  • Evangelia Nousiopoulou
  • Stavros Chatzigeorgiou
  • Theodoros Mavridis
  • Ioannis Kokkinakis
  • Olga Touloumi
  • Theano Irinopoulou
  • Konstantinos Chouliaras
  • Constantinos Pantos
  • Dimitris Karacostas
  • Nikolaos GrigoriadisEmail author


Thyroid hormones (TH) and receptors (TRs) may play an important role in the pathophysiology of acute cerebral ischemia. In the present study, we sought to determine whether serum triodothyronine (T3)/thyroxine (T4) and brain TRs (TRα1, TRβ1) might change after experimental stroke. Male adult Wistar rats were subjected to permanent middle cerebral artery occlusion (group P) and compared to sham-operated controls (group S). Animals were followed clinically for 14 days until brain collection for Western blot (WB) or neuropathological analysis of TRs in three different brain areas (infarcted tissue, E1; noninfarcted ipsilateral hemisphere, E2; and contralateral hemisphere, E3). Analysis of serum TH levels showed a reduction of T4 in group P (p = 0.002) at days 2 to 14, while half of the animals also displayed “low T3” values (p = 0.012) on day 14. This T4 reduction was inversely correlated to the clinical severity of stroke and the concomitant body weight loss (p < 0.005). WB analysis of TRα1 and TRβ1 protein expression showed heterogenic responses at day 14: total and nuclear TRα1 were similar between the two groups, while total TRβ1 decreased 7.5-fold within E1 (p ≤ 0.001) with a concomitant 1.8-fold increase of nuclear TRβ1 in E2 area (p = 0.03); TRβ1 expression did not differ in E3. Neuropathological analysis revealed that activated macrophages/microglia exclusively expressed nuclear TRα1 within the infarct core. Astrocytes mildly expressed nuclear TRα1 in and around the infarct, along with a prominent TRβ nuclear signal restricted in the astrocytic scar. Neurons around the infarct expressed mainly TRα1 and, to a milder degree, TRβ. Surprisingly enough, we detected for the first time a TRβ expression in the paranodal region of Ranvier nodes, of unknown significance so far. Our data support that cerebral ischemia induces a low TH response, associated with significant and heterogenic changes in brain TR expression. These findings could imply an important role of TH signaling in cerebral ischemia.


Thyroxin Cerebral ischemia Brain remodeling Thyroid receptor Plasticity Astrocytic scar MCAO 



The present work was supported by Bodossaki Foundation and a “Central Macedonia Regional Operational Programme” (co-financed from national resources and from EU Structural Funds).

Conflict of Interest

The authors have nothing to disclose in relevance to the present study.

Supplementary material

12031_2014_253_MOESM1_ESM.tif (475 kb)
Supplementary Figure Representative cortical high magnification fields from the pre-absorption assays for the TRβ antibody. Panel (A) indicates a clear, nodal, TRβ signal using the regular immunofluorescent (IF) staining protocol, without pre-absorption; panel (B) indicates a complete absence of the specific nodal TRβ signal with mild non-specific tissue background, after antibody-peptide pre-absorption IF; panel (C) indicates no fluorescent signal after incubation of the tissue with the secondary antibody as an internal control (Biotium 488). Inserts display higher magnification details of the corresponding optical fields (small white blocks). (TIFF 475 kb)
12031_2014_253_Fig9_ESM.jpg (7 kb)

High resolution image (JPEG 6 kb)


  1. Akhoundi FH, Ghorbani A, Soltani A, Meysamie A (2011) Favorable functional outcomes in acute ischemic stroke patients with subclinical hypothyroidism. Neurology 77:349–354PubMedCrossRefGoogle Scholar
  2. Al-Abed Y, Metz CN, Cheng KF, Aljabari B, VanPatten S, Blau S et al (2011) Thyroxine is a potential endogenous antagonist of macrophage migration inhibitory factor (MIF) activity. Proc Natl Acad Sci U S A 108:8224–8227PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alevizaki M, Synetou M, Xynos K, Pappa T, Vemmos KN (2007) Low triiodothyronine: a strong predictor of outcome in acute stroke patients. Eur J Clin Investig 37:651–657CrossRefGoogle Scholar
  4. Astapova I, Hollenberg AN (2013) The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta 1830:3876–3881PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259PubMedCrossRefGoogle Scholar
  6. Bernal J, Morte B (2013) Thyroid hormone receptor activity in the absence of ligand: physiological and developmental implications. Biochim Biophys Acta 1830(7):3893–3899PubMedCrossRefGoogle Scholar
  7. Boelen A, Kwakkel J, Fliers E (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32:670–693PubMedCrossRefGoogle Scholar
  8. Calza L, Fernandez M, Giardino L (2010) Cellular approaches to central nervous system remyelination stimulation: thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J Mol Endocrinol 44:13–23PubMedCrossRefGoogle Scholar
  9. Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742PubMedCrossRefGoogle Scholar
  10. Chassande O (2003) Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocrinol 31:9–20PubMedCrossRefGoogle Scholar
  11. Courtin F, Zrouri H, Lamirand A, Li WW, Mercier G, Schumacher M et al (2005) Thyroid hormone deiodinases in the central and peripheral nervous system. Thyroid 15:931–942PubMedCrossRefGoogle Scholar
  12. Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63:272–287PubMedCrossRefGoogle Scholar
  13. Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23:265–271PubMedCrossRefGoogle Scholar
  14. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K + channel. J Neurosci 24:1236–1244PubMedCrossRefGoogle Scholar
  15. Di Liegro I (2008) Thyroid hormones and the central nervous system of mammals (review). Mol Med Rep 1:279–295PubMedGoogle Scholar
  16. Diano S, Horvath TL (2008) Type 3 deiodinase in hypoxia: to cool or to kill? Cell Metab 7:363–364PubMedCrossRefGoogle Scholar
  17. Dittmar M, Spruss T, Schuierer G, Horn M (2003) External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 34:2252–2257PubMedCrossRefGoogle Scholar
  18. Dittmar MS, Vatankhah B, Fehm NP, Retzl G, Schuierer G, Bogdahn U et al (2005) The role of ECA transection in the development of masticatory lesions in the MCAO filament model. Exp Neurol 195:372–378PubMedCrossRefGoogle Scholar
  19. Genovese T, Impellizzeri D, Ahmad A, Cornelius C, Campolo M, Cuzzocrea S et al (2013) Post-ischaemic thyroid hormone treatment in a rat model of acute stroke. Brain Res 1513:92–102PubMedGoogle Scholar
  20. Golombek SG (2008) Nonthyroidal illness syndrome and euthyroid sick syndrome in intensive care patients. Semin Perinatol 32:413–418PubMedCrossRefGoogle Scholar
  21. Harada H, Wang Y, Mishima Y, Uehara N, Makaya T, Kano T (2005) A novel method of detecting rCBF with laser-Doppler flowmetry without cranial window through the skull for a MCAO rat model. Brain Res Brain Res Protoc 14:165–170PubMedGoogle Scholar
  22. Hung PL, Huang CC, Huang HM, Tu DG, Chang YC (2013) Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor. Stroke 44:2275–2283PubMedCrossRefGoogle Scholar
  23. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lee CH, Yoo KY, Hwang IK, Choi JH, Park OK, Li H et al (2010) Hypothyroid state does not protect but delays neuronal death in the hippocampal CA1 region following transient cerebral ischemia: focus on oxidative stress and gliosis. J Neurosci Res 88:2661–2668PubMedCrossRefGoogle Scholar
  25. Lima FR, Gervais A, Colin C, Izembart M, Neto VM, Mallat M (2001) Regulation of microglial development: a novel role for thyroid hormone. J Neurosci 21:2028–2038PubMedGoogle Scholar
  26. Lopez M, Tena-Sempere M, Dieguez C (2010) Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 31:113–127PubMedCrossRefGoogle Scholar
  27. Lourbopoulos A, Karacostas D, Artemis N, Milonas I, Grigoriadis N (2008) Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. J Neurosci Methods 173:225–234PubMedCrossRefGoogle Scholar
  28. Lourbopoulos A, Chatzigeorgiou S, Mavridis T, Kokkinakis I, Tascos N, Simeonidou C (2012) Stereotactic coordinates for intracerebroventricular infusion after permanent focal cerebral ischemia in Wistar rats. Hippokratia 16:51–56PubMedCentralPubMedGoogle Scholar
  29. Manzano J, Bernal J, Morte B (2007) Influence of thyroid hormones on maturation of rat cerebellar astrocytes. Int J Dev Neurosci 25:171–179PubMedCrossRefGoogle Scholar
  30. Mendes-de-Aguiar CB, Alchini R, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG (2008) Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res 86:3117–3125PubMedCrossRefGoogle Scholar
  31. Mistry N, Wass J, Turner MR (2009) When to consider thyroid dysfunction in the neurology clinic. Pract Neurol 9:145–156PubMedCrossRefGoogle Scholar
  32. Mourouzis I, Forini F, Pantos C, Iervasi G (2011) Thyroid hormone and cardiac disease: from basic concepts to clinical application. J Thyroid Res 2011:958626PubMedCentralPubMedCrossRefGoogle Scholar
  33. Ogawa S, Lozach J, Jepsen K, Sawka-Verhelle D, Perissi V, Sasik R et al (2004) A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci U S A 101:14461–14466PubMedCentralPubMedCrossRefGoogle Scholar
  34. Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V et al (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432PubMedCrossRefGoogle Scholar
  35. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D et al (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42:718–724PubMedCrossRefGoogle Scholar
  36. Pantos C, Mourouzis I, Cokkinos DV (2012) Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality? Can J Physiol Pharmacol 90(8):977–987PubMedGoogle Scholar
  37. Portella AC, Carvalho F, Faustino L, Wondisford FE, Ortiga-Carvalho TM, Gomes FC (2010) Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci 44:68–77PubMedCrossRefGoogle Scholar
  38. Puymirat J, Miehe M, Marchand R, Sarlieve L, Dussault JH (1991) Immunocytochemical localization of thyroid hormone receptors in the adult rat brain. Thyroid 1:173–184PubMedCrossRefGoogle Scholar
  39. Rogers DC, Campbell CA, Stretton JL, Mackay KB (1997) Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28:2060–2065, discussion 2066PubMedCrossRefGoogle Scholar
  40. Saijo K, Crotti A, Glass CK (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61:104–111PubMedCrossRefGoogle Scholar
  41. Shulga A, Rivera C (2013) Interplay between thyroxin, BDNF and GABA in injured neurons. Neuroscience 239:241–252PubMedCrossRefGoogle Scholar
  42. Shulga A, Blaesse A, Kysenius K, Huttunen HJ, Tanhuanpaa K, Saarma M et al (2009) Thyroxin regulates BDNF expression to promote survival of injured neurons. Mol Cell Neurosci 42:408–418PubMedCrossRefGoogle Scholar
  43. Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983PubMedCentralPubMedGoogle Scholar
  44. Storey NM, Gentile S, Ullah H, Russo A, Muessel M, Erxleben C et al (2006) Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci U S A 103:5197–5201PubMedCentralPubMedCrossRefGoogle Scholar
  45. Tatsumi K, Haga S, Matsuyoshi H, Inoue M, Manabe T, Makinodan M et al (2005) Characterization of cells with proliferative activity after a brain injury. Neurochem Int 46:381–389PubMedCrossRefGoogle Scholar
  46. Theotokis P, Lourbopoulos A, Touloumi O, Lagoudaki R, Kofidou E, Nousiopoulou E et al (2012) Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuropathol Exp Neurol 71:907–920PubMedGoogle Scholar
  47. Trentin AG (2006) Thyroid hormone and astrocyte morphogenesis. J Endocrinol 189:189–197PubMedCrossRefGoogle Scholar
  48. Trentin AG, Moura Neto V (1995) T3 affects cerebellar astrocyte proliferation, GFAP and fibronectin organization. Neuroreport 6:293–296PubMedCrossRefGoogle Scholar
  49. Vose LR, Vinukonda G, Jo S, Miry O, Diamond D, Korumilli R et al (2013) Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 33:17232–17246PubMedCentralPubMedCrossRefGoogle Scholar
  50. Wallis K, Sjogren M, van Hogerlinden M, Silberberg G, Fisahn A, Nordstrom K et al (2008) Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 28:1904–1915PubMedCrossRefGoogle Scholar
  51. Wallis K, Dudazy S, van Hogerlinden M, Nordstrom K, Mittag J, Vennstrom B (2010) The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 24:1904–1916PubMedCrossRefGoogle Scholar
  52. Williams AJ, O’Shea PJ, Williams GR (2007) Complex interactions between thyroid hormone and fibroblast growth factor signalling. Curr Opin Endocrinol Diabetes Obes 14:410–415PubMedCrossRefGoogle Scholar
  53. Wollenweber FA, Zietemann V, Gschwendtner A, Opherk C, Dichgans M (2013) Subclinical hyperthyroidism is a risk factor for poor functional outcome after ischemic stroke. Stroke 44:1446–1448PubMedCrossRefGoogle Scholar
  54. Xiong X, White RE, Xu L, Yang L, Sun X, Zou B et al (2013) Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke 44:764–770PubMedCentralPubMedCrossRefGoogle Scholar
  55. Zhang Y, Meyer MA (2010) Clinical analysis on alteration of thyroid hormones in the serum of patients with acute ischemic stroke. Stroke Res Treat 2010:290678PubMedCentralPubMedGoogle Scholar
  56. Zhang Z, Zhang L, Yepes M, Jiang Q, Li Q, Arniego P et al (2002) Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106:740–745PubMedCrossRefGoogle Scholar
  57. Zoupi L, Savvaki M, Karagogeos D (2011) Axons and myelinating glia: an intimate contact. IUBMB Life 63:730–735PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Athanasios Lourbopoulos
    • 1
  • Iordanis Mourouzis
    • 2
  • Theodoros Karapanayiotides
    • 1
  • Evangelia Nousiopoulou
    • 1
  • Stavros Chatzigeorgiou
    • 1
  • Theodoros Mavridis
    • 1
  • Ioannis Kokkinakis
    • 1
  • Olga Touloumi
    • 1
  • Theano Irinopoulou
    • 3
  • Konstantinos Chouliaras
    • 1
  • Constantinos Pantos
    • 2
  • Dimitris Karacostas
    • 1
  • Nikolaos Grigoriadis
    • 1
    Email author
  1. 1.B’ Department of Neurology, Laboratory of Experimental Neurology and NeuroimmunologyAHEPA University HospitalThessalonikiGreece
  2. 2.Laboratory of Pharmacology, Medical SchoolUniversity of AthensGoudi, AthensGreece
  3. 3.Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance

Personalised recommendations