Journal of Molecular Neuroscience

, Volume 53, Issue 4, pp 553–561 | Cite as

Study of the Spatial Correlation Between Neuronal Activity and BOLD fMRI Responses Evoked by Sensory and Channelrhodopsin-2 Stimulation in the Rat Somatosensory Cortex

  • Nan Li
  • Peter van Zijl
  • Nitish Thakor
  • Galit Pelled
Article

Abstract

In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency–dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.

Keywords

Hemodynamic fMRI Optical imaging Optogenetics Somatosensory cortex 

References

  1. Airan RD, Li N, Gilad AA, Pelled G (2013) Genetic tools to manipulate MRI contrast. NMR Biomed 26:803–809PubMedCentralPubMedCrossRefGoogle Scholar
  2. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRefGoogle Scholar
  3. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  5. Caesar K, Thomsen K, Lauritzen M (2003) Dissociation of spikes, synaptic activity, and activity-dependent increments in rat cerebellar blood flow by tonic synaptic inhibition. Proc Natl Acad Sci U S A 100:16000–16005PubMedCentralPubMedCrossRefGoogle Scholar
  6. Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839PubMedCentralPubMedCrossRefGoogle Scholar
  7. Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405PubMedCentralPubMedCrossRefGoogle Scholar
  8. Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN et al (2007) Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci 27:4452–4459PubMedCentralPubMedCrossRefGoogle Scholar
  9. Devor A, Hillman EM, Tian P, Waeber C, Teng IC, Ruvinskaya L et al (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28:14347–14357PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201PubMedCrossRefGoogle Scholar
  11. Dunn AK, Devor A, Dale AM, Boas DA (2005) Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27:279–290PubMedCrossRefGoogle Scholar
  12. Ekstrom A (2010) How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res Rev 62:233–244PubMedCentralPubMedCrossRefGoogle Scholar
  13. Enager P, Piilgaard H, Offenhauser N, Kocharyan A, Fernandes P, Hamel E et al (2009) Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J Cereb Blood Flow Metab 29:976–986PubMedCrossRefGoogle Scholar
  14. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359PubMedCrossRefGoogle Scholar
  15. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376PubMedCrossRefGoogle Scholar
  16. Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M, Graybiel AM et al (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086–15091PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kahn I, Knoblich U, Desai M, Bernstein J, Graybiel AM, Boyden ES et al (2013) Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res 1511:33–45PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kim SG, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188–1206PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kim DS, Ronen I, Olman C, Kim SG, Ugurbil K, Toth LJ (2004) Spatial relationship between neuronal activity and BOLD functional MRI. Neuroimage 21:876–885PubMedCrossRefGoogle Scholar
  20. Kim T, Masamoto K, Fukuda M, Vazquez A, Kim SG (2010) Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats. Neuroimage 52:224–233PubMedCentralPubMedCrossRefGoogle Scholar
  21. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169PubMedCrossRefGoogle Scholar
  22. Lauritzen M (2005) Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 6:77–85PubMedCrossRefGoogle Scholar
  23. Lauritzen M, Mathiesen C, Schaefer K, Thomsen KJ (2012) Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 62:1040–1050PubMedCrossRefGoogle Scholar
  24. Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol (Oxf) 203:47–59CrossRefGoogle Scholar
  25. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792PubMedCentralPubMedCrossRefGoogle Scholar
  26. Li N, Jia X, Murari K, Parlapalli R, Rege A, Thakor NV (2009) High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast. J Neurosci Methods 176:230–236PubMedCrossRefGoogle Scholar
  27. Li N, Downey JE, Bar-Shir A, Gilad AA, Walczak P, Kim H et al (2011) Optogenetic-guided cortical plasticity after nerve injury. Proc Natl Acad Sci U S A 108:8838–8843PubMedCentralPubMedCrossRefGoogle Scholar
  28. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878PubMedCrossRefGoogle Scholar
  29. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  30. Miller MW, Potempa G (1990) Numbers of neurons and glia in mature rat somatosensory cortex: effects of prenatal exposure to ethanol. J Comp Neurol 293:92–102PubMedCrossRefGoogle Scholar
  31. Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27:6892–6902PubMedCrossRefGoogle Scholar
  32. Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951–954PubMedCrossRefGoogle Scholar
  33. Pawela CP, Biswal BB, Hudetz AG, Li R, Jones SR, Cho YR et al (2010) Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 49:2467–2478PubMedCentralPubMedCrossRefGoogle Scholar
  34. Pelled G, Bergstrom DA, Tierney PL, Conroy RS, Chuang KH, Yu D et al (2009) Ipsilateral cortical fMRI responses after peripheral nerve damage in rats reflect increased interneuron activity. Proc Natl Acad Sci U S A 106:14114–14119PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sanganahalli BG, Herman P, Hyder F (2008) Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR Biomed 21:410–416PubMedCentralPubMedCrossRefGoogle Scholar
  36. Scott NA, Murphy TH (2012) Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS One 7:e29859PubMedCentralPubMedCrossRefGoogle Scholar
  37. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577PubMedCrossRefGoogle Scholar
  38. Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A 99:15182–15187PubMedCentralPubMedCrossRefGoogle Scholar
  39. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219PubMedCrossRefGoogle Scholar
  40. Sultan F, Augath M, Logothetis N (2007) BOLD sensitivity to cortical activation induced by microstimulation: comparison to visual stimulation. Magn Reson Imaging 25:754–759PubMedCrossRefGoogle Scholar
  41. Ugurbil K, Toth L, Kim DS (2003) How accurate is magnetic resonance imaging of brain function? Trends Neurosci 26:108–114PubMedCrossRefGoogle Scholar
  42. van Eijsden P, Hyder F, Rothman DL, Shulman RG (2009) Neurophysiology of functional imaging. Neuroimage 45:1047–1054PubMedCentralPubMedCrossRefGoogle Scholar
  43. van Zijl PC, Eleff SM, Ulatowski JA, Oja JM, Ulug AM, Traystman RJ et al (1998) Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 4:159–167PubMedCrossRefGoogle Scholar
  44. Vanzetta I, Grinvald A (2008) Coupling between neuronal activity and microcirculation: implications for functional brain imaging. HFSP J 2:79–98PubMedCentralPubMedCrossRefGoogle Scholar
  45. Vazquez AL, Fukuda M, Crowley JC, Kim SG (2013) Neural and hemodynamic responses elicited by forelimb- and photo-stimulation in channelrhodopsin-2 mice: insights into the hemodynamic point spread function. Cereb Cortex (in press)Google Scholar
  46. Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312PubMedCrossRefGoogle Scholar
  47. Yen CC, Fukuda M, Kim SG (2011) BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: insights into the neural basis of fMRI. Neuroimage 58:82–90PubMedCentralPubMedCrossRefGoogle Scholar
  48. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456PubMedCrossRefGoogle Scholar
  49. Zhao F, Wang P, Kim SG (2004) Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4 T. Magn Reson Med 51:518–524PubMedCrossRefGoogle Scholar
  50. Zhao F, Wang P, Hendrich K, Ugurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160PubMedCrossRefGoogle Scholar
  51. Zhao F, Zhao T, Zhou L, Wu Q, Hu X (2008) BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39:248–260PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nan Li
    • 1
    • 2
  • Peter van Zijl
    • 1
    • 2
  • Nitish Thakor
    • 3
  • Galit Pelled
    • 1
    • 2
  1. 1.F. M. Kirby Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreUSA
  2. 2.The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR ResearchJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.The Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations