Journal of Molecular Neuroscience

, Volume 52, Issue 4, pp 497–506 | Cite as

Association of Innate Immune Single-Nucleotide Polymorphisms with the Electroencephalogram During Desflurane General Anaesthesia

  • Claire Vignette Mulholland
  • Andrew Alexander Somogyi
  • Daniel Thomas Barratt
  • Janet Kristie Coller
  • Mark Rowland Hutchinson
  • Gregory Michael Jacobson
  • Raymond Thomas Cursons
  • James Wallace SleighEmail author


The electroencephalogram (EEG) records the electrical activity of the brain and enables effects of anaesthetic drugs on brain functioning to be monitored. Identification of genes contributing to EEG variability during anaesthesia is important to the clinical application of anaesthesia monitoring and may provide an avenue to identify molecular mechanisms underlying the generation and regulation of brain oscillations. Central immune signalling can impact neuronal activity in the brain and accumulating evidence suggests an important role for cytokines as neuronal modulators. We tested 21 single-nucleotide polymorphisms (SNPs) in immune-related genes for associations with three anaesthesia-induced EEG patterns; spindle amplitude, delta power and alpha power, during general anaesthesia with desflurane in 111 patients undergoing general, gynaecological or orthopaedic surgery. Wide inter-patient variability was observed for all EEG variables. MYD88 rs6853 (p = 6.7 × 10−4) and IL- rs1143627 in conjunction with rs6853 (p = 1.5 × 10−3) were associated with spindle amplitude, and IL-10 rs1800896 was associated with delta power (p = 1.3 × 10−2) suggesting involvement of cytokine signalling in modulation of EEG patterns during desflurane anaesthesia. BDNF rs6265 was associated with alpha power (p = 3.9 × 10−3), suggesting differences in neuronal plasticity might also influence EEG patterns during desflurane anaesthesia. This is the first study we are aware of that has investigated genetic polymorphisms that may influence the EEG during general anaesthesia.


Electroencephalogram Anaesthesia SNP Cytokine Inflammation IL-1β 



This work was supported by the National Health and Medical Research Council of Australia [1011521] and the Australian and New Zealand College of Anaesthetists [09/020]. JK Coller was a recipient of an FTT Fricker Research Fellowship (University of Adelaide, Medical Endowment Funds). Dr. Mark Hutchinson is an ARC Australian Research Fellow [ID: 110100297].

Supplementary material

12031_2013_201_MOESM1_ESM.docx (33 kb)
ESM 1 DOCX 33 kb


  1. Aschner M (1998) Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19:269–281PubMedGoogle Scholar
  2. Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P et al (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35:335–344PubMedCentralPubMedGoogle Scholar
  3. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  4. Bolton MM, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20:3221–3232PubMedGoogle Scholar
  5. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen JM, Ferec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Hum Genet 120:301–333PubMedCrossRefGoogle Scholar
  7. Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12–29PubMedCrossRefGoogle Scholar
  8. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Role Neural Plast Chem Intolerance 933:222–234Google Scholar
  9. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160PubMedCentralPubMedCrossRefGoogle Scholar
  10. Davis CN, Mann E, Behrens MM, Gaidarova S, Rebek M, Rebek J Jr et al (2006) MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics. Proc Natl Acad Sci U S A 103:2953–2958PubMedCentralPubMedCrossRefGoogle Scholar
  11. Davis LG, Kuehl WM, Battey JF (1994) Basic methods in molecular biology, 2nd edition. Appleton and Lange, Norwalk, CTGoogle Scholar
  12. Dhiman N, Ovsyannikova IG, Vierkant RA, Ryan JE, Pankratz VS, Jacobson RM et al (2008) Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine 26:1731–1736PubMedCentralPubMedCrossRefGoogle Scholar
  13. Di Paola R, Frittitta L, Miscio G, Bozzali M, Baratta R, Centra M et al (2002) A variation in 3′ UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am J Hum Genet 70:806–812PubMedCentralPubMedCrossRefGoogle Scholar
  14. Drouin-Ouellet J, LeBel M, Filali M, Cicchetti F (2012) MyD88 deficiency results in both cognitive and motor impairments in mice. Brain Behav Immun 26:880–885PubMedCrossRefGoogle Scholar
  15. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO et al (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714PubMedCentralPubMedCrossRefGoogle Scholar
  16. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  17. Enoch MA, Shen PH, Ducci F, Yuan Q, Liu J, White KV et al (2008) Common genetic origins for EEG, alcoholism and anxiety: the role of CRH-BP. PLoS One 3:e3620PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M et al (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci U S A 106:15037–15042PubMedCentralPubMedCrossRefGoogle Scholar
  19. Galic MA, Riazi K, Pittman QJ (2012) Cytokines and brain excitability. Front Neuroendocrinol 33:116–125PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gatt JM, Kuan SA, Dobson-Stone C, Paul RH, Joffe RT, Kemp AH et al (2008) Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity. Biol Psychol 79:275–284PubMedCrossRefGoogle Scholar
  21. Hodgkinson CA, Enoch MA, Srivastava V, Cummins-Oman JS, Ferrier C, Iarikova P et al (2010) Genome-wide association identifies candidate genes that influence the human electroencephalogram. Proc Natl Acad Sci U S A 107:8695–8700PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jameson LC, Sloan TB (2006) Using EEG to monitor anesthesia drug effects during surgery. J Clin Monit Comput 20:445–472PubMedCrossRefGoogle Scholar
  23. Kimura R, Nishioka T, Soemantri A, Ishida T (2004) Cis-acting effect of the IL1B C-31T polymorphism on IL-1 beta mRNA expression. Genes and Immun 5:572–575CrossRefGoogle Scholar
  24. Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW et al (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127:1437–1445PubMedCrossRefGoogle Scholar
  25. Krueger JM (2008) The role of cytokines in sleep regulation. Curr Pharm Des 14:3408–3416PubMedCentralPubMedCrossRefGoogle Scholar
  26. Krueger JM, Clinton JM, Winters BD, Zielinski MR, Taishi P, Jewett KA et al (2011) Involvement of cytokines in slow wave sleep. Prog Brain Res 193:39–47PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kushikata T, Fang J, Krueger JM (1999) Interleukin-10 inhibits spontaneous sleep in rabbits. J Interferon Cytokine Res 19:1025–1030PubMedCrossRefGoogle Scholar
  28. Landolt HP (2011) Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res 193:51–61PubMedCrossRefGoogle Scholar
  29. Law CJ, Jacobson GM, Kluger M, Chaddock M, Scott M, Sleigh JW (2013) A randomised controlled trial of the effect of depth of anaesthesia on postoperative pain. Br J Anaesth. doi: 10.1093/bja/aet419 PubMedGoogle Scholar
  30. Leslie K, Sleigh J, Paech MJ, Voss L, Lim CW, Sleigh C (2009) Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology 111:547–555PubMedCrossRefGoogle Scholar
  31. Lind H, Haugen A, Zienolddiny S (2007) Differential binding of proteins to the IL1B-31T/C polymorphism in lung epithelial cells. Cytokine 38:43–48PubMedCrossRefGoogle Scholar
  32. Miller GM, Madras BK (2002) Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 7:44–55PubMedCrossRefGoogle Scholar
  33. Mitra P, Bokil H (2008) Observed brain dynamics. Oxford University Press, OxfordGoogle Scholar
  34. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892PubMedCrossRefGoogle Scholar
  35. Opp MR (2005) Cytokines and sleep. Sleep Med Rev 9:355–364PubMedCrossRefGoogle Scholar
  36. Opp MR, Smith EM, Hughes TK Jr (1995) Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J Neuroimmunol 60:165–168PubMedCrossRefGoogle Scholar
  37. Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Hohler T (2002) Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 3:407–413PubMedCrossRefGoogle Scholar
  38. Schafers M, Sorkin L (2008) Effect of cytokines on neuronal excitability. Neurosci Lett 437:188–193PubMedCrossRefGoogle Scholar
  39. Sleigh JW, Scheib CM, Sanders RD (2011) General anaesthesia and electroencephalographic spindles. Trends Anaesth Crit Care 1:263–269CrossRefGoogle Scholar
  40. Tabarean IV, Korn H, Bartfai T (2006) Interleukin-1 beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience 141:1685–1695PubMedCrossRefGoogle Scholar
  41. Takeuchi O, Akira S (2002) MyD88 as a bottle neck in Toll/IL-1 signaling. Curr Top Microbiol Immunol 270:155–167PubMedGoogle Scholar
  42. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8PubMedCrossRefGoogle Scholar
  43. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74:457–471PubMedCrossRefGoogle Scholar
  44. Wang S, Cheng Q, Malik S, Yang J (2000) Interleukin-1 beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther 292:497–504PubMedGoogle Scholar
  45. Zhou C, Ye HH, Wang SQ, Chai Z (2006) Interleukin-1 beta regulation of N-type Ca2+ channels in cortical neurons. Neurosci Lett 403:181–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Claire Vignette Mulholland
    • 1
  • Andrew Alexander Somogyi
    • 2
  • Daniel Thomas Barratt
    • 2
  • Janet Kristie Coller
    • 2
  • Mark Rowland Hutchinson
    • 2
  • Gregory Michael Jacobson
    • 1
  • Raymond Thomas Cursons
    • 1
  • James Wallace Sleigh
    • 3
    • 4
    Email author
  1. 1.Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  2. 2.Discipline of Pharmacology, School of Medical SciencesUniversity of AdelaideAdelaideAustralia
  3. 3.Department of Anaesthesia, University of AucklandWaikato HospitalHamiltonNew Zealand
  4. 4.Department of Anaesthesia, Waikato Clinical School, Peter Rothwell Academic Centre, University of AucklandWaikato HospitalHamiltonNew Zealand

Personalised recommendations