Journal of Molecular Neuroscience

, Volume 53, Issue 1, pp 10–21 | Cite as

Delineation of Domains Within the Cannabinoid CB1 and Dopamine D2 Receptors That Mediate the Formation of the Heterodimer Complex



Both the cannabinoid CB1 receptor (CB1) and dopamine D2 receptor (D2R) are G protein-coupled receptors that are linked to inhibitory Gαi/o protein, whereby activation of the receptor leads to the inhibition of cAMP production. Moreover, previous findings have shown evidence of cross-talk between the dopamine and endocannabinoid systems. In this report, we confirm the interaction of CB1 and D2R with co-immunoprecipitation experiments using human embryonic kidney 293T (HEK-293T) cells co-expressing both receptors. We also generated GST and His-tagged fusion proteins of the D2R and CB1 and conducted affinity purification assays and in vitro binding experiments to show that the CB1–D2R complex can be formed by a direct protein–protein interaction. This interaction is mediated by the carboxyl terminus of the CB1 receptor and the third intracellular loop of the D2 receptor. Co-transfection of an inhibitory mini-gene resulted in decreased levels of the CB1–D2R complex. Using a cAMP biosensor, we show that activation of D2R or CB1 alone in HEK-293T cells co-expressing both receptors leads to an inhibition of forskolin-stimulated cAMP accumulation. However, co-activation of both receptors resulted in a loss of this inhibition on cAMP accumulation. Our findings characterize the physical interaction between CB1 and D2R as well as demonstrate the potential functional outcome of the receptor complex.


Dopamine Cannabinoid G protein-coupled receptor Protein–protein interaction 



Cannabinoid CB1 receptor


Dopamine D2 receptor






Förster resonance energy transfer


Multicolor bimolecular fluorescence complementation





We thank Dr. Mary Abood for kindly providing the human CB1 cDNA and Dr. Ken Mackie for providing the rat CB1 cDNA. We also thank Dr. Martin Lohse for providing the epac1-camp plasmid. We thank Beryl Luk for technical assistance and Dr. Tim Beischlag for reviewing the manuscript. This study was funded by a Young Investigator Grant from the MIND BC Foundation and from a grant from the William and Ada Isabelle Steel Fund.


  1. Bakshi K, Mercier RW, Pavlopoulos S (2007) Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin-2. FEBS Lett 581:5009–5016PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bartlett SE, Enquist J, Hopf FW, Lee JH, Gladher F, Kharazia V, Waldhoer M, Mailliard WS, Armstrong R, Bonci A, Whistler JL (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bloom AS, Kiernan CJ (1980) Interaction of ambient temperature with the effects of delta 9-tetrahydrocannabinol on brain catecholamine synthesis and plasma corticosterone levels. Psychopharmacology (Berl) 67:215–219CrossRefGoogle Scholar
  4. Bofill-Cardona E, Kudlacek O, Yang Q, Ahorn H, Freissmuth M, Nanoff C (2000) Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J Biol Chem 275:32672–32680PubMedCrossRefGoogle Scholar
  5. Canals M, Milligan G (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem 283:11424–11434PubMedCrossRefGoogle Scholar
  6. Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A–dopamine D2 receptor–receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749PubMedCrossRefGoogle Scholar
  7. Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferre S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259PubMedCrossRefGoogle Scholar
  8. Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agro A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal GABAergic transmission. Neuropsychopharmacology 29:1488–1497PubMedCrossRefGoogle Scholar
  9. Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455PubMedCrossRefGoogle Scholar
  10. Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10:2825–2830PubMedCrossRefGoogle Scholar
  11. El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012) Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 38:36–50PubMedCrossRefGoogle Scholar
  12. Ellis J, Pediani JD, Canals M, Milasta S, Milligan G (2006) Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824PubMedCrossRefGoogle Scholar
  13. Fitzgerald ML, Chan J, Mackie K, Lupica CR, Pickel VM (2012) Altered dendritic distribution of dopamine D2 receptors and reduction in mitochondrial number in parvalbumin-containing interneurons in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout mice. J Comp Neurol 520:4013–4031PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284PubMedCrossRefGoogle Scholar
  15. Ginovart N, Tournier BB, Moulin-Sallanon M, Steimer T, Ibanez V, Millet P (2012) Chronic Delta(9)-tetrahydrocannabinol exposure induces a sensitization of dopamine D(2)/(3) receptors in the mesoaccumbens and nigrostriatal systems. Neuropsychopharmacology 37:2355–2367PubMedCentralPubMedCrossRefGoogle Scholar
  16. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363PubMedCrossRefGoogle Scholar
  17. Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333PubMedGoogle Scholar
  18. Hattendorf C, Hattendorf M, Coper H, Fernandes M (1977) Interaction between delta(9)-tetrahydrocannabinol and d-amphetamine. Psychopharmacology (Berl) 54:177–182CrossRefGoogle Scholar
  19. Hermann H, Marsicano G, Lutz B (2002) Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience 109:451–460PubMedCrossRefGoogle Scholar
  20. Higuera-Matas A, Botreau F, Del Olmo N, Miguens M, Olias O, Montoya GL, Garcia-Lecumberri C, Ambrosio E (2010) Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol 20:895–906PubMedCrossRefGoogle Scholar
  21. Hilairet S, Bouaboula M, Carriere D, Le Fur G, Casellas P (2003) Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem 278:23731–23737PubMedCrossRefGoogle Scholar
  22. Hojo M, Sudo Y, Ando Y, Minami K, Takada M, Matsubara T, Kanaide M, Taniyama K, Sumikawa K, Uezono Y (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci 108:308–319PubMedCrossRefGoogle Scholar
  23. Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30:339–349PubMedCrossRefGoogle Scholar
  24. Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79Google Scholar
  25. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202PubMedCrossRefGoogle Scholar
  26. Jarrahian A, Watts VJ, Barker EL (2004) D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 308:880–886PubMedCrossRefGoogle Scholar
  27. Jin W, Brown S, Roche JP, Hsieh C, Celver JP, Kovoor A, Chavkin C, Mackie K (1999) Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J Neurosci 19:3773–3780PubMedGoogle Scholar
  28. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22:8476–8486PubMedGoogle Scholar
  29. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704PubMedCrossRefGoogle Scholar
  30. Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276:37409–37414PubMedCrossRefGoogle Scholar
  31. Kim OJ, Ariano MA, Namkung Y, Marinec P, Kim E, Han J, Sibley DR (2008) D2 dopamine receptor expression and trafficking is regulated through direct interactions with ZIP. J Neurochem 106:83–95PubMedCrossRefGoogle Scholar
  32. Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613PubMedCrossRefGoogle Scholar
  33. Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 26:2127–2136PubMedCentralPubMedCrossRefGoogle Scholar
  34. Maccarrone M, Battista N, Centonze D (2007) The endocannabinoid pathway in Huntington's disease: a comparison with other neurodegenerative diseases. Prog Neurobiol 81:349–379PubMedCrossRefGoogle Scholar
  35. Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Muller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 54:815–823PubMedCrossRefGoogle Scholar
  36. Marsicano G, Lafenetre P (2009) Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci 1:201–230PubMedCrossRefGoogle Scholar
  37. Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21:802–811PubMedCrossRefGoogle Scholar
  38. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564PubMedCrossRefGoogle Scholar
  39. Meschler JP, Conley TJ, Howlett AC (2000) Cannabinoid and dopamine interaction in rodent brain: effects on locomotor activity. Pharmacol Biochem Behav 67:567–573PubMedCrossRefGoogle Scholar
  40. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  41. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRefGoogle Scholar
  42. Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci World J 8:1088–1097CrossRefGoogle Scholar
  43. Niehaus JL, Liu Y, Wallis KT, Egertova M, Bhartur SG, Mukhopadhyay S, Shi S, He H, Selley DE, Howlett AC, Elphick MR, Lewis DL (2007) CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol 72:1557–1566PubMedCentralPubMedCrossRefGoogle Scholar
  44. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218PubMedCrossRefGoogle Scholar
  45. Pan B, Hillard CJ, Liu QS (2008) D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci 28:14018–14030PubMedCentralPubMedCrossRefGoogle Scholar
  46. Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306:880–888PubMedCrossRefGoogle Scholar
  47. Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fat Acids 66:101–121CrossRefGoogle Scholar
  48. Picetti R, Saiardi A, Abdel Samad T, Bozzi Y, Baik JH, Borrelli E (1997) Dopamine D2 receptors in signal transduction and behavior. Crit Rev Neurobiol 11:121–142PubMedCrossRefGoogle Scholar
  49. Pickel VM, Chan J, Kearn CS, Mackie K (2006) Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J Comp Neurol 495:299–313PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pisani V, Madeo G, Tassone A, Sciamanna G, Maccarrone M, Stanzione P, Pisani A (2011) Homeostatic changes of the endocannabinoid system in Parkinson's disease. Mov Disord 26:216–222PubMedCrossRefGoogle Scholar
  51. Przybyla JA, Watts VJ (2010) Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers. J Pharmacol Exp Ther 332:710–719PubMedCentralPubMedCrossRefGoogle Scholar
  52. Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477PubMedCrossRefGoogle Scholar
  53. Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395PubMedCentralPubMedCrossRefGoogle Scholar
  54. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288:154–157PubMedCrossRefGoogle Scholar
  55. Rodrigues LC, Conti CL, Nakamura-Palacios EM (2011) Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Delta9-THC administration into the medial prefrontal cortex. Brain Res 1382:230–237PubMedCrossRefGoogle Scholar
  56. Romero J, Garcia L, Cebeira M, Zadrozny D, Fernandez-Ruiz JJ, Ramos JA (1995) The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sci 56:2033–2040PubMedCrossRefGoogle Scholar
  57. Smith FD, Oxford GS, Milgram SL (1999) Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 274:19894–19900PubMedCrossRefGoogle Scholar
  58. So CH, Varghese G, Curley KJ, Kong MM, Alijaniaram M, Ji X, Nguyen T, O'dowd BF, George SR (2005) D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 68:568–578PubMedGoogle Scholar
  59. Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383PubMedCentralPubMedCrossRefGoogle Scholar
  60. Solinas M, Tanda G, Wertheim CE, Goldberg SR (2010) Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology (Berl) 209:191–202CrossRefGoogle Scholar
  61. Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacology 168:327–365Google Scholar
  62. Szabo B, Muller T, Koch H (1999) Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J Neurochem 73:1084–1089PubMedCrossRefGoogle Scholar
  63. Thanos PK, Gopez V, Delis F, Michaelides M, Grandy DK, Wang GJ, Kunos G, Volkow ND (2011) Upregulation of cannabinoid type 1 receptors in dopamine D2 receptor knockout mice is reversed by chronic forced ethanol consumption. Alcohol Clin Exp Res 35:19–27PubMedCentralPubMedCrossRefGoogle Scholar
  64. van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150PubMedCrossRefGoogle Scholar
  65. Volkow ND, Wang GJ, Fowler JS, Tomasi D (2012) Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol 52:321–336PubMedCentralPubMedCrossRefGoogle Scholar
  66. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494PubMedCrossRefGoogle Scholar
  67. Zarrindast MR, Dorrani M, Lachinani R, Rezayof A (2010) Blockade of dorsal hippocampal dopamine receptors inhibits state-dependent learning induced by cannabinoid receptor agonist in mice. Neurosci Res 67:25–32PubMedCrossRefGoogle Scholar
  68. Zenko M, Zhu Y, Dremencov E, Ren W, Xu L, Zhang X (2011) Requirement for the endocannabinoid system in social interaction impairment induced by coactivation of dopamine D1 and D2 receptors in the piriform cortex. J Neurosci Res 89:1245–1258PubMedCrossRefGoogle Scholar
  69. Zhu PJ (2006) Endocannabinoid signaling and synaptic plasticity in the brain. Crit Rev Neurobiol 18:113–124PubMedCrossRefGoogle Scholar
  70. Zou S, Li L, Pei L, Vukusic B, Van Tol HH, Lee FJ, Wan Q, Liu F (2005) Protein–protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 25:4385–4395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Health SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations