Advertisement

Journal of Molecular Neuroscience

, Volume 52, Issue 1, pp 10–17 | Cite as

VIP Modulates IL-22R1 Expression and Prevents the Contribution of Rheumatoid Synovial Fibroblasts to IL-22-Mediated Joint Destruction

  • Mar Carrión
  • Yasmina Juarranz
  • Iria V. Seoane
  • Carmen Martínez
  • Isidoro González-Álvaro
  • José Luis Pablos
  • Irene Gutiérrez-Cañas
  • Rosa P. GomarizEmail author
Article

Abstract

Rheumatoid arthritis (RA) and osteoarthritis are two rheumatic diseases whose progression is associated with a chronic synovitis. Fibroblast-like synoviocytes (FLS) have been shown to play a pivotal role in initiating and perpetuating inflammatory and destructive processes in the rheumatoid joint. Recently, the stimulating role of IL-22 has been reported on RA-FLS contribution to joint destruction by means of the increase of proliferation and matrix-metalloproteinase-1 (MMP-1) and alarmin S100A8/A9 production. Besides, mediators potentially present in inflamed joints have been shown to increase the expression of IL-22/IL-22R1 axis, amplifying the capacity of FLS to respond to IL-22 signalling. Since targeting cytokines that govern FLS activation would allow controlling their contribution to synovial inflammation, the present study was designed to analyze the potential immunoregulatory capacity of vasoactive intestinal peptide (VIP) to counterbalance IL-22 effects on FLS behavior. Our results showed that VIP is able to downregulate the augmented expression of IL-22 specific receptor in FLS subjected to a proinflammatory milieu. Moreover, this study revealed the ability of VIP to inhibit the IL-22 stimulatory effects on proliferation as well as on expression of both MMP-1 and alarmins in RA-FLS. The present findings reinforce the potential of this neuroimmunopeptide as a therapeutic agent in rheumatic diseases.

Keywords

Vasoactive intestinal peptide IL-22R1 Rheumatic diseases S100A8/A9 alarmins MMP-1 Synovial fibroblast 

Notes

Acknowledgements

This work was supported by Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (PI11/00195, PI12/00758 and RD12/0009/0002, RIER), and SII10/BMD-2350 from Comunidad Autónoma de Madrid (CAM), by grants from ISCIII to MC.

References

  1. Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M et al (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid model of Crohn’s disease. Gastroenterology 124:961–971PubMedCrossRefGoogle Scholar
  2. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324PubMedCrossRefGoogle Scholar
  3. Arranz A, Gutiérrez-Cañas I, Carrión M, Juarranz Y, Pablos JL, Martínez C et al (2008) VIP reverses the expression profiling of TLR4-stimulated signalling pathway in rheumatoid arthritis synovial fibroblasts. Mol Immunol 45:3065–3073PubMedCrossRefGoogle Scholar
  4. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233:233–255PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bottini N, Firestein GS (2013) Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 9:24–33PubMedCrossRefGoogle Scholar
  6. Calich AL, Domiciano DS, Fuller R (2010) Osteoarthritis: can anti-cytokine therapy play a role in treatment. Clin Rheumatol 29(17):451–455PubMedCrossRefGoogle Scholar
  7. Carrión M, Juarranz Y, Pérez-García S, Jimeno R, Pablos JL, Gomariz RP et al (2011) RNA sensors in human osteoarthritis and rheumatoid arthritis synovial fibroblasts: immune regulation by vasoactive intestinal peptide. Arthritis Rheum 63:1626–1636PubMedCrossRefGoogle Scholar
  8. Carrión M., Juarranz Y., Martínez C., Gonzalez-Alvaro I., L. Pablos J.L., Gutiérrez-Canas I. et al. (2013a) IL-22/IL-22R1 axis and S100A8/A9 alarmins in human osteoarthritic and rheumatoid arthritis synovial fibroblasts. Rheumatology. doi: 10.1093/rheumatology/ket315Google Scholar
  9. Carrión M, Pérez-García S, Jimeno R, Juarranz Y, González-Álvaro I, Pablos JL et al (2013b) Inflammatory mediators alter interleukin-17 receptor, interleukin-12 and -23 expression in human osteoarthritic and rheumatoid arthritis synovial fibroblasts: immunomodulation by vasoactive intestinal Peptide. Neuroimmunomodulation 20:274–284PubMedCrossRefGoogle Scholar
  10. da Rocha LF, Jr DÂL, Dantas AT, Mariz HA, Pitta IR, Galdino SL et al (2012) Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity. J Rheumatol 39:1320–1325PubMedCrossRefGoogle Scholar
  11. Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP (2001) Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7:563–568PubMedCrossRefGoogle Scholar
  12. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361PubMedCrossRefGoogle Scholar
  13. Grevers LC, de Vries TJ, Vogl T, Abdollahi-Roodsaz S, Sloetjes AW, Leenen PJ et al (2011) S100A8 enhances osteoclastic bone resorption in vitro through activation of Toll-like receptor 4. Arthritis Rheum 63:1365–1375PubMedCrossRefGoogle Scholar
  14. Gutiérrez-Cañas I, Juarranz Y, Santiago B, Arranz A, Martinez C, Galindo M et al (2006) VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology 45:527–532PubMedCrossRefGoogle Scholar
  15. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K et al (2005) Expression of IL-22 in rheumatoid arthritis. Arthritis Rheum 52:1037–1046PubMedCrossRefGoogle Scholar
  16. Jimeno R, Gomariz RP, Gutiérrez-Cañas I, Martínez C, Juarranz Y, Leceta J (2010) New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol Cell Biol 88:734–745PubMedCrossRefGoogle Scholar
  17. Juarranz MG, Santiago B, Torroba M, Gutierrez-Cañas I, Palao G, Galindo M et al (2004) Vasoactive intestinal peptide modulates proinflammatory mediator synthesis in osteoarthritic and rheumatoid synovial cells. Rheumatology 43:416–422PubMedCrossRefGoogle Scholar
  18. Juarranz Y, Abad C, Martinez C, Arranz A, Gutierrez-Cañas I, Rosignoli F et al (2005) Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. J Arthritis Res Ther 7:R1034–R1045CrossRefGoogle Scholar
  19. Juarranz Y, Gutiérrez-Cañas I, Arranz A, Martínez C, Abad C, Leceta J et al (2006) VIP decreases TLR4 expression induced by LPS and TNFα treatment in human synovial fibroblasts. Ann NY Acad Sci 1070:359–364PubMedCrossRefGoogle Scholar
  20. Juarranz Y, Gutiérrez-Cañas I, Santiago B, Carrión M, Pablos JL, Gomariz RP (2008) Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum 58:1086–1095PubMedCrossRefGoogle Scholar
  21. Kane D, Roth J, Frosch M, Vogl T, Bresnihan B, FitzGerald O (2003) Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatic arthritis. Arthritis Rheum 48:1676–1685PubMedCrossRefGoogle Scholar
  22. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42PubMedCrossRefGoogle Scholar
  23. Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ et al (2012) IL-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64:1015–1023PubMedCrossRefGoogle Scholar
  24. Leipe J, Schramm MA, Grunke M, Baeuerle M, Dechant C, Nigg AP et al (2011) Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis 70:1453–1457PubMedCrossRefGoogle Scholar
  25. Li H, Mei Y, Wang Y, Xu L (2006) Vasoactive intestinal peptide suppressed experimental autoimmune encephalomyelitis by inhibiting T helper 1 responses. J Clin Immunol 26:430–437PubMedCrossRefGoogle Scholar
  26. Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP et al (2006) Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren’s syndrome. Ann Rheum Dis 65:195–200PubMedCrossRefGoogle Scholar
  27. Martinez C, Abad C, Delgado M, Arranz A, Juarranz MG, Rodriguez-Henche N et al (2002) Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proc Natl Acad Sci U S A 99:1053–1058PubMedCentralPubMedCrossRefGoogle Scholar
  28. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRefGoogle Scholar
  29. Mitra A, Raychaudhuri S, Raychaudhiri SP (2012) Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther 14:R65PubMedCentralPubMedCrossRefGoogle Scholar
  30. Murphy G, Nagase H (2008) Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4:128–135PubMedCrossRefGoogle Scholar
  31. Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U (2010) Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16:458–468PubMedCrossRefGoogle Scholar
  32. Said SI, Hamidi SA, Dickman KG, Szema AM, Lyubsky S, Lin RZ et al (2007) Moderate pulmonary arterial hypertension in the male mice lacking the vasoactive intestinal peptide gene. Circulation 115:1260–1268PubMedGoogle Scholar
  33. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257PubMedCentralPubMedCrossRefGoogle Scholar
  34. Schelbergen RF, Blom AB, van den Bosch MH, Slöetjes A, Abdollahi-Roodsaz S, Schreurs BW et al (2012) Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum 64:1477–1487PubMedCrossRefGoogle Scholar
  35. Scott DL (2012) Biologics-based therapy for the treatment of rheumatoid arthritis. Clin Pharmacol Ther 91:30–43PubMedCrossRefGoogle Scholar
  36. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635PubMedCrossRefGoogle Scholar
  37. Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H et al (2006) The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid artritis. Arthritis Res Ther 8:R69PubMedCentralPubMedCrossRefGoogle Scholar
  38. Szema AM, Hamidi SA, Lyubsky S, Dickman KG, Mathew S, Abdel-Razek T et al (2006) Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol 291:L880–L886PubMedCrossRefGoogle Scholar
  39. Vacas E, Arenas MI, Muñoz-Moreno L, Bajo AM, Sánchez-Chapado M, Prieto JC et al (2013) Antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice. Cancer Lett 336:196–203PubMedCrossRefGoogle Scholar
  40. van Lent PL, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T et al (2008) Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis 67:1750–1758PubMedCrossRefGoogle Scholar
  41. van Lent PL, Blom AB, Schelbergen RF, Slöetjes A, Lafeber FP, Lems WF et al (2012) Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum 64:1466–1476PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mar Carrión
    • 1
  • Yasmina Juarranz
    • 1
  • Iria V. Seoane
    • 1
  • Carmen Martínez
    • 2
  • Isidoro González-Álvaro
    • 3
  • José Luis Pablos
    • 4
  • Irene Gutiérrez-Cañas
    • 1
  • Rosa P. Gomariz
    • 1
    Email author
  1. 1.Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Biología Celular, Facultad de MedicinaUniversidad Complutense de MadridMadridSpain
  3. 3.Servicio de Reumatología. Hospital Universitario de la PrincesaInstituto de Investigación Sanitaria la PrincesaMadridSpain
  4. 4.Servicio de ReumatologíaInstituto de Investigación Hospital 12 de Octubre (I + 12)MadridSpain

Personalised recommendations