Journal of Molecular Neuroscience

, Volume 53, Issue 3, pp 298–305

Cholinesterases as Biomarkers for Parasympathetic Dysfunction and Inflammation-Related Disease

  • Shani Shenhar-Tsarfaty
  • Shlomo Berliner
  • Natan M. Bornstein
  • Hermona Soreq


Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.


Cholinesterases Acetylcholinesterase Butyrylcholinesterase Biomarkers Diseases Inflammation 


  1. Adabag AS et al (2008) Relation of heart rate parameters during exercise test to sudden death and all-cause mortality in asymptomatic men. Am J Cardiol 101(10):1437–1443PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alcantara VM et al (2002) Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Invest 62(5):399–404PubMedCrossRefGoogle Scholar
  3. Alkalay A et al (2013) Plasma acetylcholinesterase activity correlates with intracerebral beta-amyloid load. Curr Alzheimer Res 10(1):48–56PubMedCentralPubMedGoogle Scholar
  4. Alvarez GE et al (2002) Sympathetic neural activation in visceral obesity. Circulation 106(20):2533–2536PubMedCrossRefGoogle Scholar
  5. Arena R et al (2006) Prognostic value of heart rate recovery in patients with heart failure. Am Heart J 151(4):851.e7–851.e13CrossRefGoogle Scholar
  6. Bai A, Guo Y, Lu N (2007) The effect of the cholinergic anti-inflammatory pathway on experimental colitis. Scand J Immunol 66(5):538–545PubMedCrossRefGoogle Scholar
  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ben Assayag E et al (2010) Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med 16(7–8):278–286PubMedCentralPubMedGoogle Scholar
  9. Benmoyal-Segal L et al (2005) Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson’s disease. FASEB J 19(3):452–454PubMedGoogle Scholar
  10. Berson A et al (2012) Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med 4(8):730–742PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bhuiyan MB, Murad F, Fant ME (2006) The placental cholinergic system: localization to the cytotrophoblast and modulation of nitric oxide. Cell Commun Signal 4:4PubMedCentralPubMedCrossRefGoogle Scholar
  12. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95CrossRefGoogle Scholar
  13. Birikh KR et al (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad Sci U S A 100(1):283–288PubMedCentralPubMedCrossRefGoogle Scholar
  14. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462PubMedCrossRefGoogle Scholar
  15. Calabresi P et al (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurol 5(11):974–983PubMedCrossRefGoogle Scholar
  16. Calderon-Margalit R et al (2006) Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem 52(5):845–852PubMedCrossRefGoogle Scholar
  17. Cole CR et al (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341(18):1351–1357PubMedCrossRefGoogle Scholar
  18. Conner JM et al (2003) Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38(5):819–829PubMedCrossRefGoogle Scholar
  19. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285(19):2486–2497CrossRefGoogle Scholar
  20. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287(3):356–359PubMedCrossRefGoogle Scholar
  21. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580PubMedCrossRefGoogle Scholar
  22. Ganguli SC et al (2007) A comparison of autonomic function in patients with inflammatory bowel disease and in healthy controls. Neurogastroenterol Motil 19(12):961–967PubMedGoogle Scholar
  23. Ghia JE et al (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131(4):1122–1130PubMedCrossRefGoogle Scholar
  24. Giacobini E (2003) Cholinergic function and Alzheimer’s disease. Int J Geriatr Psychiatry 18(Suppl 1):S1–S5PubMedCrossRefGoogle Scholar
  25. Goliasch G et al (2012a) Routinely available biomarkers improve prediction of long-term mortality in stable coronary artery disease: the Vienna and Ludwigshafen Coronary Artery Disease (VILCAD) risk score. Eur Heart J 33(18):2282–2289PubMedCrossRefGoogle Scholar
  26. Goliasch G et al (2012b) Butyrylcholinesterase activity predicts long-term survival in patients with coronary artery disease. Clin Chem 58(6):1055–1058PubMedCrossRefGoogle Scholar
  27. Greenwood JP, Stoker JB, Mary DA (1999) Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation 100(12):1305–1310PubMedCrossRefGoogle Scholar
  28. Guest PC, Gottschalk MG, Bahn S (2013) Proteomics: improving biomarker translation to modern medicine? Genome Med 5(2):17PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hanin G, Soreq H (2011) Cholinesterase-targeting microRNAs identified in silico affect specific biological processes. Front Mol Neurosci 4:28PubMedCentralPubMedCrossRefGoogle Scholar
  30. Honda K et al (2013) Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol 43(2):103–109PubMedCrossRefGoogle Scholar
  31. Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jouven X et al (2005) Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 352(19):1951–1958PubMedCrossRefGoogle Scholar
  33. Kaufer D et al (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393(6683):373–377PubMedCrossRefGoogle Scholar
  34. Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86(1):29–48PubMedCrossRefGoogle Scholar
  35. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74(6):675–696PubMedCrossRefGoogle Scholar
  36. Koennecke HC et al (2011) Factors influencing in-hospital mortality and morbidity in patients treated on a stroke unit. Neurology 77(10):965–972PubMedCrossRefGoogle Scholar
  37. Lahiri MK, Kannankeril PJ, Goldberger JJ (2008) Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol 51(18):1725–1733PubMedCrossRefGoogle Scholar
  38. Lau P, de Strooper B (2010) Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol 21(7):768–773PubMedCrossRefGoogle Scholar
  39. Lau P et al (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5(10):1613–1634PubMedCentralPubMedCrossRefGoogle Scholar
  40. Leeper NJ et al (2007) Prognostic value of heart rate increase at onset of exercise testing. Circulation 115(4):468–474PubMedCrossRefGoogle Scholar
  41. Lev-Lehman E et al (1997) Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 89(10):3644–3653PubMedGoogle Scholar
  42. Loewenstein-Lichtenstein Y et al (1995) Genetic predisposition to adverse consequences of anti-cholinesterases in ‘atypical’ BCHE carriers. Nat Med 1(10):1082–1085PubMedCrossRefGoogle Scholar
  43. Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. I. Pflügers Archiv 189:239–242CrossRefGoogle Scholar
  44. Maharshak N et al (2013) MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis 19(7):1346–1353PubMedCrossRefGoogle Scholar
  45. Massoulie J et al (2008) Old and new questions about cholinesterases. Chem Biol Interact 175(1–3):30–44PubMedCrossRefGoogle Scholar
  46. Mayer EA, Craske M, Naliboff BD (2001) Depression, anxiety, and the gastrointestinal system. J Clin Psychiatry 62(Suppl 8):28–36, discussion 37PubMedGoogle Scholar
  47. McCafferty DM, Wallace JL, Sharkey KA (1997) Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat. Am J Physiol 272(2 Pt 1):G272–G280PubMedGoogle Scholar
  48. Meisel C, Meisel A (2011) Suppressing immunosuppression after stroke. N Engl J Med 365(22):2134–2136PubMedCrossRefGoogle Scholar
  49. Meregnani J et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160(1–2):82–89PubMedCrossRefGoogle Scholar
  50. Meshorer E et al (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295(5554):508–512PubMedCrossRefGoogle Scholar
  51. Meshorer E et al (2004) Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem 279(28):29740–29751PubMedCrossRefGoogle Scholar
  52. Meshorer E et al (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116PubMedCentralPubMedCrossRefGoogle Scholar
  53. Metz CN, Tracey KJ (2005) It takes nerve to dampen inflammation. Nat Immunol 6(8):756–757PubMedCrossRefGoogle Scholar
  54. Najarian RM et al (2006) Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: the Framingham Offspring Study. Arch Intern Med 166(1):106–111PubMedCrossRefGoogle Scholar
  55. Ofek K, Soreq H (2013) Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact 203(1):113–119PubMedCrossRefGoogle Scholar
  56. Ofek K et al (2007) Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med (Berl) 85(11):1239–1251CrossRefGoogle Scholar
  57. Parnetti L, Chiasserini D (2011) Role of CSF biomarkers in the diagnosis of prodromal Alzheimer’s disease. Biomark Med 5(4):479–484PubMedCrossRefGoogle Scholar
  58. Perry EK et al (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2(6150):1457–1459PubMedCentralPubMedCrossRefGoogle Scholar
  59. Podoly E et al (2009) The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 284(25):17170–17179PubMedCentralPubMedCrossRefGoogle Scholar
  60. Pohjavaara P, Telaranta T, Vaisanen E (2003) The role of the sympathetic nervous system in anxiety: is it possible to relieve anxiety with endoscopic sympathetic block? Nord J Psychiatry 57(1):55–60PubMedCrossRefGoogle Scholar
  61. Prass K et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198(5):725–736PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369PubMedCrossRefGoogle Scholar
  63. Rachakonda V, Pan TH, Le WD (2004) Biomarkers of neurodegenerative disorders: how good are they? Cell Res 14(5):347–358PubMedCrossRefGoogle Scholar
  64. Rao AA, Sridhar GR, Das UN (2007) Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med Hypotheses 69(6):1272–1276PubMedCrossRefGoogle Scholar
  65. Rodriguez-Diaz R et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:882–892CrossRefGoogle Scholar
  66. Roger VL et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220PubMedCrossRefGoogle Scholar
  67. Rosas-Ballina M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052):98–101PubMedCrossRefGoogle Scholar
  68. Sailaja BS et al (2012) Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci U S A 109(52):E3687–E3695PubMedCentralPubMedCrossRefGoogle Scholar
  69. Savonen KP et al (2008) Chronotropic incompetence and mortality in middle-aged men with known or suspected coronary heart disease. Eur Heart J 29(15):1896–1902PubMedCrossRefGoogle Scholar
  70. Schwartz J (2000) Neurotransmitters. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neuronal science. McGraw-Hill, New-York, pp 281–297Google Scholar
  71. Shaked I et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31(6):965–973PubMedCrossRefGoogle Scholar
  72. Shaltiel G et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218(1):59–72PubMedCentralPubMedCrossRefGoogle Scholar
  73. Shenhar-Tsarfaty S et al (2010) Interleukin-6 as an early predictor for one-year survival following an ischaemic stroke/transient ischaemic attack. Int J Stroke 5(1):16–20PubMedCrossRefGoogle Scholar
  74. Shenhar-Tsarfaty S et al (2011) Post-stroke cholinergic biomarkers. Science. Available at
  75. Shenhar-Tsarfaty S et al (2011b) Butyrylcholinesterase interactions with amylin may protect pancreatic cells in metabolic syndrome. J Cell Mol Med 15(8):1747–1756PubMedCrossRefGoogle Scholar
  76. Shishehbor MH, Hoogwerf BJ, Lauer MS (2004) Association of triglyceride-to-HDL cholesterol ratio with heart rate recovery. Diabetes Care 27(4):936–941PubMedCrossRefGoogle Scholar
  77. Sklan EH et al (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci U S A 101(15):5512–5517PubMedCentralPubMedCrossRefGoogle Scholar
  78. Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2(4):294–302PubMedCrossRefGoogle Scholar
  79. Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17(10):548–555PubMedCrossRefGoogle Scholar
  80. Straznicky NE et al (2008) Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep 10(6):440–447PubMedCrossRefGoogle Scholar
  81. Sykora M et al (2011) Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke 42(5):1218–1223PubMedCrossRefGoogle Scholar
  82. Thalamas C et al (2000) Glucose-induced sympathetic activity and energy expenditure during acute alpha2-adrenergic antagonism in obese subjects. Int J Obes Relat Metab Disord 24(6):695–700PubMedCrossRefGoogle Scholar
  83. Tracey KJ (2010) Understanding immunity requires more than immunology. Nat Immunol 11(7):561–564PubMedCrossRefGoogle Scholar
  84. Trakhtenberg EF, Goldberg JL (2011) Immunology neuroimmune communication. Science 334(6052):47–48PubMedCrossRefGoogle Scholar
  85. Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77:59–79PubMedCrossRefGoogle Scholar
  87. Wong CH et al (2011) Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334(6052):101–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shani Shenhar-Tsarfaty
    • 1
    • 2
  • Shlomo Berliner
    • 3
  • Natan M. Bornstein
    • 4
  • Hermona Soreq
    • 1
  1. 1.The Edmond and Lily Safra Center for Brain Science and Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Internal Medicine “E” and Neurology Departments, Tel Aviv Medical Center, affiliated to the Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Internal Medicine “E” Department, Tel Aviv Medical Center, affiliated to the Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  4. 4.Neurology Department, Tel Aviv Medical Center, affiliated to the Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations