Journal of Molecular Neuroscience

, Volume 52, Issue 1, pp 148–155 | Cite as

MicroRNA-124 (miR-124) Regulates Ku70 Expression and is Correlated with Neuronal Death Induced by Ischemia/Reperfusion

  • Fei Zhu
  • Jing-Li Liu
  • Jing-Pin Li
  • Fang Xiao
  • Zhao-Xia Zhang
  • Lei Zhang


MicroRNAs are small, non-coding RNA molecules that regulate gene expression, and miR-124 is the most abundant miRNA in the brain. Studies have shown that miR-124 is clearly reduced in the ischemic brain after stroke; however, the role of miR-124 after stroke is less well studied. Using TargetScan, MicroCosm Targets version 5, and databases, we identified miR-124 as a possible regulator of the DNA repair protein Ku70. We validated that Ku70 is a target for miR-124 with a luciferase reporter activity assay. Moreover, adult rats subjected to focal cerebral ischemia exhibited a substantial reduction of miR-124 expression, which was inversely upregulated by Ku70 expression. In vivo treatment with miR-124 antagomir effectively enhanced Ku70 mRNA and protein levels in the ischemic region. Furthermore, knockdown of cerebral miR-124 reduced cell death and infarct size and improved neurological outcomes. Our data demonstrate that miR-124 is an endogenous regulator of Ku70 that improves ischemia/reperfusion (I/R)-induced brain injury and dysfunction.


Cerebral ischemia Ku70 MicroRNA Apoptosis 


  1. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA 102:18017–18022PubMedCrossRefGoogle Scholar
  2. Amsel AD, Rathaus M, Kronman N, Cohen HY (2008) Regulation of the proapoptotic factor Bax by Ku70-dependent deubiquitylation. Proc Natl Acad Sci U S A 105:5117–5122PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  4. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90PubMedCentralPubMedCrossRefGoogle Scholar
  5. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232–245PubMedCrossRefGoogle Scholar
  7. Clark AM, Goldstein LD, Tevlin M, Tavare S, Shaham S, Miska EA (2010) The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 38:3780–3793PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638PubMedCrossRefGoogle Scholar
  9. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687PubMedCentralPubMedCrossRefGoogle Scholar
  10. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511PubMedCrossRefGoogle Scholar
  11. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCrossRefGoogle Scholar
  12. Jeyaseelan K, Herath WB, Armugam A (2007) MicroRNAs as therapeutic targets in human diseases. Expert Opin Ther Targets 11:1119–1129PubMedCrossRefGoogle Scholar
  13. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966PubMedCrossRefGoogle Scholar
  14. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659PubMedCrossRefGoogle Scholar
  15. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  16. Kim GW, Noshita N, Sugawara T, Chan PH (2001) Early decrease in DNA repair proteins, Ku70 and Ku86, and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 32:1401–1407PubMedCrossRefGoogle Scholar
  17. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  18. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedCrossRefGoogle Scholar
  20. Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD, Kim SH (2007) Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322:1084–1092PubMedCrossRefGoogle Scholar
  21. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK, Roh JK (2010) MicroRNAs induced during ischemic preconditioning. Stroke 41:1646–1651PubMedCrossRefGoogle Scholar
  22. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  23. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 6:e23461PubMedCentralPubMedCrossRefGoogle Scholar
  24. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke J Cereb Circ 20:84–91CrossRefGoogle Scholar
  25. Mazumder S, Plesca D, Kinter M, Almasan A (2007) Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol Cell Biol 27:3511–3520PubMedCentralPubMedCrossRefGoogle Scholar
  26. Rathaus M, Lerrer B, Cohen HY (2009) Deubiquitylation: a novel DUB enzymatic activity for the DNA repair protein, Ku70. Cell Cycle 8:1843–1852PubMedCrossRefGoogle Scholar
  27. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5:320–329PubMedCrossRefGoogle Scholar
  28. Shackelford DA, Tobaru T, Zhang S, Zivin JA (1999) Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 19:4727–4738PubMedGoogle Scholar
  29. Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP (2005) Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:4842–4847PubMedCentralPubMedCrossRefGoogle Scholar
  30. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293PubMedCrossRefGoogle Scholar
  31. Vemuganti R, Dempsey RJ, Bowen KK (2004) Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke 35:179–184PubMedCrossRefGoogle Scholar
  32. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, Kishimoto C, Iwai N (2011) Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res (Tokyo, Japan) 32:135–141CrossRefGoogle Scholar
  33. Winters A, Taylor JC, Ren M, Ma R, Liu R, Yang SH (2012) Transient focal cerebral ischemia induces long-term cerebral vasculature dysfunction in a rodent experimental stroke model. Transl Stroke Res 3:279–285PubMedCentralPubMedCrossRefGoogle Scholar
  34. Yano K, Morotomi-Yano K, Adachi N, Akiyama H (2009) Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J Radiat Res 50:97–108PubMedCrossRefGoogle Scholar
  35. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38:17–26PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fei Zhu
    • 1
  • Jing-Li Liu
    • 1
  • Jing-Pin Li
    • 1
  • Fang Xiao
    • 1
  • Zhao-Xia Zhang
    • 1
  • Lei Zhang
    • 1
  1. 1.Department of Neurology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina

Personalised recommendations