Journal of Molecular Neuroscience

, Volume 51, Issue 3, pp 655–662 | Cite as

Using Protein Misfolding Cyclic Amplification Generates a Highly Neurotoxic PrP Dimer Causing Neurodegeneration

  • XiuJin Yang
  • LiFeng Yang
  • XiangMei Zhou
  • Sher Hayat Khan
  • HuiNuan Wang
  • XiaoMin Yin
  • Zhen Yuan
  • ZhiQi Song
  • WenYu Wu
  • DeMing Zhao
Article

Abstract

Under the “protein-only” hypothesis, prion-based diseases are proposed to result from an infectious agent that is an abnormal isoform of the prion protein in the scrapie form, PrPSc. However, since PrPSc is highly insoluble and easily aggregates in vivo, this view appears to be overly simplistic, implying that the presence of PrPSc may indirectly cause neurodegeneration through its intermediate soluble form. We generated a neurotoxic PrP dimer with partial pathogenic characteristics of PrPSc by protein misfolding cyclic amplification in the presence of 1-palmitoyl-2-oleoylphosphatidylglycerol consisting of recombinant hamster PrP (23–231). After intracerebral injection of the PrP dimer, wild-type hamsters developed signs of neurodegeneration. Clinical symptoms, necropsy findings, and histopathological changes were very similar to those of transmissible spongiform encephalopathies. Additional investigation showed that the toxicity is primarily related to cellular apoptosis. All results suggested that we generated a new neurotoxic form of PrP, PrP dimer, which can cause neurodegeneration. Thus, our study introduces a useful model for investigating PrP-linked neurodegenerative mechanisms.

Keywords

Prion PrP dimer PMCA PrPSc PrP 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (projects 31001048, 31172293, and 31272532), the Specialized Research Fund for the Doctoral Program of Higher Education and (SRFDP, project 20100008120002), the Foundation of Chinese Ministry of Science and Technology (project 2011BAI15B01), and the Program for Cheung Kong Scholars and Innovative Research Team in University of China (IRT0866).

References

  1. Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathogens 5:e1000421PubMedCrossRefGoogle Scholar
  2. Benetti F, Legname G (2009) De novo mammalian prion synthesis. Prion 3:213–219PubMedCrossRefGoogle Scholar
  3. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379(6563):339–343PubMedCrossRefGoogle Scholar
  4. Castilla J, Saá P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985PubMedGoogle Scholar
  5. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439PubMedCrossRefGoogle Scholar
  6. Chiesa R, Piccardo P, Quaglio E, Drisaldi B, Si-Hoe SL, Takao M, Ghetti B, Harris DA (2003) Molecular distinction between pathogenic and infectious properties of the prion protein. J Virol 77:7611–7622PubMedCrossRefGoogle Scholar
  7. Cobb NJ, Surewicz WK (2009) Prion diseases and their bBiochemical mechanisms. Biochemistry 48:2574–2585PubMedCrossRefGoogle Scholar
  8. Collinge J, Palmer MS, Sidle K, Gowland I, Medori R, Ironside J, Lantos P (1995) Transmission of fatal familial insomnia to laboratory animals. Lancet 346:569PubMedCrossRefGoogle Scholar
  9. Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci 104:9741–9746PubMedCrossRefGoogle Scholar
  10. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720PubMedCrossRefGoogle Scholar
  11. Florio T, Thellung S, Amico C, Robello M, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1998) Prion protein fragment 106–126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res 54:341–352PubMedCrossRefGoogle Scholar
  12. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546PubMedCrossRefGoogle Scholar
  13. Goldfarb LG et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Sci (New York, NY) 258:806–808CrossRefGoogle Scholar
  14. Haık S, Peyrin J, Lins L, Rosseneu M, Brasseur R, Langeveld J, Tagliavini F, Deslys J, Lasmezas C, Dormont D (2000) Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis 7:644–656PubMedCrossRefGoogle Scholar
  15. Jeffrey M, McGovern G, Siso S, Gonzalez L (2011) Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121:131–134CrossRefGoogle Scholar
  16. Kazlauskaite J, Young A, Gardner CE, Macpherson JV, Vénien-Bryan C, Pinheiro TJT (2005) An unusual soluble β-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem Biophys Res Commun 328:292–305PubMedCrossRefGoogle Scholar
  17. Lasmézas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, Fournier JG, Hauw JJ, Rossier J, Dormont D (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275:402–404PubMedCrossRefGoogle Scholar
  18. Lucassen R, Nishina K, Supattapone S (2003) In vitro amplification of protease-resistant prion protein requires free sulfhydryl groups. Biochemistry 42:4127–4135PubMedCrossRefGoogle Scholar
  19. Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874PubMedCrossRefGoogle Scholar
  20. Manson JC, Jamieson E, Baybutt H, Tuzi NL, Barron R, McConnell I, Somerville R, Ironside J, Will R, Sy MS (1999) A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 18:6855–6864PubMedCrossRefGoogle Scholar
  21. Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathogens 5:e1000426PubMedCrossRefGoogle Scholar
  22. Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836PubMedCrossRefGoogle Scholar
  23. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Sci (New York, NY) 216:136CrossRefGoogle Scholar
  24. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813PubMedCrossRefGoogle Scholar
  25. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4:1157–1165PubMedCrossRefGoogle Scholar
  26. Soto C, Anderes L, Suardi S, Cardone F, Castilla J, Frossard MJ, Peano S, Saa P, Limido L, Carbonatto M (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642PubMedCrossRefGoogle Scholar
  27. Tateishi J, Kitamoto T (1995) Inherited prion diseases and transmission to rodents. Brain Pathol 5:53–59PubMedCrossRefGoogle Scholar
  28. Tateishi J, Kitamoto T, Hoque M, Furukawa H (1996) Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46:532–537PubMedCrossRefGoogle Scholar
  29. Telling GC, Haga T, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB (1996) Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 10:1736–1750PubMedCrossRefGoogle Scholar
  30. Veith NM, Plattner H, Stuermer CAO, Schulz-Schaeffer WJ, Bürkle A (2009) Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J cell biol 88:45–63PubMedCrossRefGoogle Scholar
  31. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135PubMedCrossRefGoogle Scholar
  32. Weber P, Giese A, Piening N, Mitteregger G, Thomzig A, Beekes M, Kretzschmar HA (2007) Generation of genuine prion infectivity by serial PMCA. Vet Microbiol 123:346–357PubMedCrossRefGoogle Scholar
  33. Weissmann C (1991) A 'unified theory' of prion propagation. Nature 352(6337):679–683PubMedCrossRefGoogle Scholar
  34. Weissmann C, Enari M, Klohn P, Rossi D, Flechsig E (2002) Molecular biology of prions. Acta Neurobiol Exp 62:153–166Google Scholar
  35. Zahn R, von Schroetter C, Wüthrich K (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett 417:400–404PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • XiuJin Yang
    • 1
  • LiFeng Yang
    • 1
  • XiangMei Zhou
    • 1
  • Sher Hayat Khan
    • 1
  • HuiNuan Wang
    • 1
  • XiaoMin Yin
    • 1
  • Zhen Yuan
    • 1
  • ZhiQi Song
    • 1
  • WenYu Wu
    • 1
  • DeMing Zhao
    • 1
  1. 1.State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy LaboratoryCollege of Veterinary Medicine, China Agricultural UniversityBeijingChina

Personalised recommendations