Journal of Molecular Neuroscience

, Volume 50, Issue 1, pp 70–77

Role of Paraoxonase-1 in the Protection of Hydrogen Sulfide-Donating Sildenafil (ACS6) Against Homocysteine-Induced Neurotoxicity

  • Xiao-Qing Tang
  • Rong-Qian Chen
  • Ling Dong
  • Yan-Kai Ren
  • Piero Del Soldato
  • Anna Sparatore
  • Duan-Fang Liao
Article

Abstract

ACS6, a novel hydrogen sulfide (H2S)-releasing sildenafil, has been demonstrated to inhibit superoxide formation through donating H2S. We have previously found that ACS6 antagonizes homocysteine-induced apoptosis and cytotoxicity. The aim of the present study is to explore the molecular mechanisms underlying ACS6-exerted protective action against the neurotoxicity of homocysteine. In the present work, we used PC12 cells to explore whether paraoxonase-1 (PON-1) is implicated in ACS6-induced neuroprotection against homocysteine neurotoxicity. We show that ACS6 treatment results in prevention of homocysteine-caused neurotoxicity and overproduction of reactive oxygen species (ROS). Homocysteine downregulates the expression and activity of PON-1; however, this effect is significantly blocked by co-treatment with ACS6. The specific inhibitor of PON-1 2-hydroxyquinoline reverses the inhibitory effect of ACS6 on homocysteine-induced neurotoxicity and intracellular ROS accumulation. These results indicate that ACS6 protects PC12 cells against homocysteine-induced neurotoxicity by upregulating PON-1 and suggest a promising role of PON-1 as a novel therapeutic strategy for homocysteine-induced toxicity.

Keywords

H2S-releasing sildenafil Homocysteine Neurotoxicity Paraoxonase-1 Reactive oxygen species 

References

  1. Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Ataee R, Moghaddam SN (2010) Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain. J Med Food 13:821–826PubMedCrossRefGoogle Scholar
  2. Aviram M, Rosenblat M (2005) Paraoxonases and cardiovascular diseases: pharmacological and nutritional influences. Curr Opin Lipidol 16:393–399PubMedCrossRefGoogle Scholar
  3. Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL, Newton RS, La Du B (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 26:892–904PubMedCrossRefGoogle Scholar
  4. Borowczyk K, Shih DM, Jakubowski H (2012) Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis. doi:10.3233/JAD-2012-111940
  5. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116PubMedCrossRefGoogle Scholar
  6. Chasse JF (2005) Inverse correlation between phenylacetate hydrolase activity of the serum PON1 protein and homocysteinemia in humans. Thromb Haemost 93:182–183PubMedGoogle Scholar
  7. Christie LA, Riedel G, Algaidi SA, Whalley LJ, Platt B (2005) Enhanced hippocampal long-term potentiation in rats after chronic exposure to homocysteine. Neurosci Lett 373:119–124PubMedCrossRefGoogle Scholar
  8. Grieve A, Butcher SP, Griffiths R (1992) Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J Neurosci Res 32:60–68PubMedCrossRefGoogle Scholar
  9. Hamelet J, Ait-Yahya-Graison E, Matulewicz E, Noll C, Badel-Chagnon A, Camproux AC, Demuth K, Paul JL, Delabar JM, Janel N (2007) Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice. Eur J Clin Invest 37:933–938PubMedCrossRefGoogle Scholar
  10. Heinecke JW, Rosen H, Suzuki LA, Chait A (1987) The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem 262:10098–10103PubMedGoogle Scholar
  11. Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D, Rogers E, Shea TB (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J Neurochem 78:249–253PubMedCrossRefGoogle Scholar
  12. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC (2010) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813–827PubMedGoogle Scholar
  13. Hooshmand B, Solomon A, Kareholt I, Leiviska J, Rusanen M, Ahtiluoto S, Winblad B, Laatikainen T, Soininen H, Kivipelto M (2010) Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology 75:1408–1414PubMedCrossRefGoogle Scholar
  14. Isobe C, Abe T, Terayama Y (2009) Homocysteine may contribute to pathogenesis of RNA damage in brains with Alzheimer’s disease. Neurodegener Dis 6:252–257PubMedCrossRefGoogle Scholar
  15. Jakubowski H (2010) The role of paraoxonase 1 in the detoxification of homocysteine thiolactone. Adv Exp Med Biol 660:113–127PubMedCrossRefGoogle Scholar
  16. Karikas GA, Kriebardis A, Samara I, Schulpis K, Papachristodoulou M, Fytou-Pallikari A (2006) Serum homocysteine levels and paraoxonase 1 activity in preschool aged children in Greece. Clin Chem Lab Med 44:623–627PubMedCrossRefGoogle Scholar
  17. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Pyo MK, Lee SM, Chung JM, Kim S, Rhim H, Oh JW, Nah SY (2007) Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res 1136:190–199PubMedCrossRefGoogle Scholar
  18. Kim HJ, Cho HK, Kwon YH (2008) Synergistic induction of ER stress by homocysteine and beta-amyloid in SH-SY5Y cells. J Nutr Biochem 19:754–761PubMedCrossRefGoogle Scholar
  19. Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW (2009) Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 55:174–180PubMedCrossRefGoogle Scholar
  20. Leduc V, Theroux L, Dea D, Robitaille Y, Poirier J (2009) Involvement of paraoxonase 1 genetic variants in Alzheimer’s disease neuropathology. Eur J Neurosci 30:1823–1830PubMedCrossRefGoogle Scholar
  21. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360PubMedCrossRefGoogle Scholar
  22. Loureiro SO, Heimfarth L, Pelaez Pde L, Vanzin CS, Viana L, Wyse AT, Pessoa-Pureur R (2008) Homocysteine activates calcium-mediated cell signaling mechanisms targeting the cytoskeleton in rat hippocampus. Int J Dev Neurosci 26:447–455PubMedCrossRefGoogle Scholar
  23. Marsillach J, Mackness B, Mackness M, Riu F, Beltran R, Joven J, Camps J (2008) Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 45:146–157PubMedCrossRefGoogle Scholar
  24. Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N (2008) H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br J Pharmacol 155:984–994PubMedCrossRefGoogle Scholar
  25. Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST (2005) The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 38:153–163PubMedCrossRefGoogle Scholar
  26. Oldreive CE, Doherty GH (2007) Neurotoxic effects of homocysteine on cerebellar Purkinje neurons in vitro. Neurosci Lett 413:52–57PubMedCrossRefGoogle Scholar
  27. Park YJ, Jang Y, Kwon YH (2010) Protective effect of isoflavones against homocysteine-mediated neuronal degeneration in SH-SY5Y cells. Amino Acids 39:785–794PubMedCrossRefGoogle Scholar
  28. Perna AF, Ingrosso D, De Santo NG (2003) Homocysteine and oxidative stress. Amino Acids 25:409–417PubMedCrossRefGoogle Scholar
  29. Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R (2006) S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc Natl Acad Sci USA 103:6489–6494PubMedCrossRefGoogle Scholar
  30. Qu K, Lee SW, Bian JS, Low CM, Wong PT (2008) Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int 52:155–165PubMedCrossRefGoogle Scholar
  31. Rajagopalan P, Hua X, Toga AW, Jack CR Jr, Weiner MW, Thompson PM (2011) Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport 22:391–395PubMedCrossRefGoogle Scholar
  32. Rozenberg O, Shiner M, Aviram M, Hayek T (2008) Paraoxonase 1 (PON1) attenuates diabetes development in mice through its antioxidative properties. Free Radic Biol Med 44:1951–1959PubMedCrossRefGoogle Scholar
  33. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246PubMedCrossRefGoogle Scholar
  34. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483PubMedCrossRefGoogle Scholar
  35. Smach MA, Jacob N, Golmard JL, Charfeddine B, Lammouchi T, Ben Othman L, Dridi H, Bennamou S, Limem K (2011) Folate and homocysteine in the cerebrospinal fluid of patients with Alzheimer’s disease or dementia: a case control study. Eur Neurol 65:270–278PubMedCrossRefGoogle Scholar
  36. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935PubMedCrossRefGoogle Scholar
  37. Tan BH, Wong PT, Bian JS (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56:3–10PubMedCrossRefGoogle Scholar
  38. Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186PubMedGoogle Scholar
  39. Tang XQ, Shen XT, Huang YE, Ren YK, Chen RQ, Hu B, He JQ, Yin WL, Xu JH, Jiang ZS (2010) Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci Res 68:241–249PubMedCrossRefGoogle Scholar
  40. Tang XQ, Chen RQ, Ren YK, Soldato PD, Sparatore A, Zhuang YY, Fang HR, Wang CY (2011a) ACS6, a hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function. Med Gas Res 1:20PubMedCrossRefGoogle Scholar
  41. Tang XQ, Fan LL, Li YJ, Shen XT, Zhuan YY, He JQ, Xu JH, Hu B (2011b) Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-induced neurotoxicity. Neurotox Res 19:403–411PubMedCrossRefGoogle Scholar
  42. Thiersch M, Raffelsberger W, Frigg R, Samardzija M, Wenzel A, Poch O, Grimm C (2008) Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genomics 9:73PubMedCrossRefGoogle Scholar
  43. Uzun H, Yanardag H, Gelisgen R, Genc H, Uygun S, Vehid S, Karter Y, Demirci S (2008) Levels of paraoxonase, an index of antioxidant defense, in patients with active sarcoidosis. Curr Med Res Opin 24:1651–1657PubMedCrossRefGoogle Scholar
  44. Van Dam F, Van Gool WA (2009) Hyperhomocysteinemia and Alzheimer’s disease: a systematic review. Arch Gerontol Geriatr 48:425–430PubMedCrossRefGoogle Scholar
  45. Wehr H, Bednarska-Makaruk M, Graban A, Lipczynska-Lojkowska W, Rodo M, Bochynska A, Ryglewicz D (2009) Paraoxonase activity and dementia. J Neurol Sci 283:107–108PubMedCrossRefGoogle Scholar
  46. White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R (2001) Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76:1509–1520PubMedCrossRefGoogle Scholar
  47. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768PubMedCrossRefGoogle Scholar
  48. Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH (2006) Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Commun 351:485–491PubMedCrossRefGoogle Scholar
  49. Yildiz H, Durmus AS, Simsek H, Yaman I (2011) Effects of sildenafil citrate on torsion/detorsion-induced changes in red blood cell and plasma lipid peroxidation, antioxidants, and blood hematology of male rats. Eur J Obstet Gynecol Reprod Biol 159:359–363PubMedCrossRefGoogle Scholar
  50. Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275PubMedCrossRefGoogle Scholar
  51. Zhuo JM, Wang H, Pratico D (2011) Is hyperhomocysteinemia an Alzheimer’s disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci 32:562–571PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiao-Qing Tang
    • 1
    • 2
  • Rong-Qian Chen
    • 1
    • 6
  • Ling Dong
    • 7
  • Yan-Kai Ren
    • 1
    • 2
  • Piero Del Soldato
    • 4
  • Anna Sparatore
    • 5
  • Duan-Fang Liao
    • 3
  1. 1.Institute of Cognition and Nervous System Diseases, Medical CollegeUniversity of South ChinaHengyangPeople’s Republic of China
  2. 2.Department of Physiology, Medical CollegeUniversity of South ChinaHengyangPeople’s Republic of China
  3. 3.Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation)Hunan University of Chinese MedicineChangshaPeople’s Republic of China
  4. 4.CTG PharmaMilanItaly
  5. 5.Department of Pharmaceutical Sciences “Pietro Pratesi”Università degli Studi di MilanoMilanItaly
  6. 6.Department of PhysiologyChuzhou City Vocation CollegeChuzhouPeople’s Republic of China
  7. 7.Department of Pathology, Medical CollegeUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations