Journal of Molecular Neuroscience

, Volume 47, Issue 1, pp 144–149 | Cite as

An AD-Related Neuroprotector Rescues Transformed Rat Retinal Ganglion Cells from CoCl2-Induced Apoptosis

  • Jie Men
  • Xiaohui Zhang
  • Yang Yang
  • Dianwen GaoEmail author


Some ocular diseases characterized by apoptotic death of retinal ganglion cells (RGCs) and Alzheimer’s disease (AD) are chronic neurodegenerative disorders and have similarities in neuropathology. Humanin (HN) is known for its ability to suppress neuronal death induced by AD-related insults. In present study, we investigated the neuroprotective effects of HN on hypoxia-induced toxicity in RGC-5 cells. Hypoxia mimetic compound cobalt chloride (CoCl2) could increase the cell viability loss and apoptosis, whereas HN can significantly attenuate these effects. This finding may provide new therapeutics for the retinal neurodegenerative diseases targeting neuroprotection.


Humanin Apoptosis RGC-5 cells Hypoxia 



We thank Professors Jianing Miao and Peng Ding, from the Laboratory of Shengjing Hospital, China Medical University, China, for their technical assistance.


  1. Arakawa T, Kita Y, Niikura T (2008) A rescue factor for Alzheimer’s diseases: discovery, activity, structure, and mechanism. Curr Med Chem 15:2086–2098PubMedCrossRefGoogle Scholar
  2. Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83:473–483PubMedCrossRefGoogle Scholar
  3. Benakia D, Zikosb C, Evangeloub A, Livanioub E, Vlassia M, Mikrosc E, Pelecanou M (2005) Solution structure of humanin, a peptide against Alzheimer’s disease-related neurotoxicity. Biochem Biophys Res Commun 329:152–160CrossRefGoogle Scholar
  4. Goldblum D, Kipfer-Kauer A, Sarra GM, Wolf S, Frueh BE (2007) Distribution of amyloid precursor protein and amyloid-beta immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest Ophthalmol Vis Sci 48:5085–5090PubMedCrossRefGoogle Scholar
  5. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–466PubMedCrossRefGoogle Scholar
  6. Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A, Ferrari G, Russo-Marie F, Sillito AM, Cheetham ME, Moss SE, Fitzke FW, Cordeiro MF (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci 104:13444–13449PubMedCrossRefGoogle Scholar
  7. Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M (2009) Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell 20:2864–2873PubMedCrossRefGoogle Scholar
  8. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ. Proc Natl Acad Sci U S A 98:6336–6341PubMedCrossRefGoogle Scholar
  9. Hashimoto Y, Suzuki H, Aiso S, Niikura T, Nishimoto I, Matsuoka M (2005) Involvement of tyrosine kinases and STAT3 in humanin-mediated neuroprotection. Life Sci 17:3092–3104CrossRefGoogle Scholar
  10. Jung SS, Van Nostrand WE (2003) Humanin rescues human cerebrovascular smooth muscle cells from Aβ-induced toxicity. J of Neurochem 84:266–272CrossRefGoogle Scholar
  11. Kariya S, Takahashi N, Hirano M, Ueno S (2003) Humanin improves impaired metabolic activity and prolongs survival of serum-deprived human lymphocytes. Mol Cell Biochem 254:83–89PubMedCrossRefGoogle Scholar
  12. Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S (2002) Humanin inhibits cell death of serum-deprived PC12 cells. Neuroreport 13:903–907PubMedCrossRefGoogle Scholar
  13. Kariya S, Hirano M, Furiya Y, Ueno S (2005) Effect of humanin on decreased ATP levels of human lymphocytes harboring A3243G mutant mitochondrial DNA. Neuropeptides 39:97–101PubMedCrossRefGoogle Scholar
  14. Krejcova G, Patocka J, Slaninova J (2004) Effect of humanin analogues on experimentally induced impairment of spatial memory in rats. J J Pept Sci 10:636–639CrossRefGoogle Scholar
  15. Krishnamoorthy RR, Agarwal P, Prasanna G, Vopat K, Lambert W, Sheedlo HJ, Pang IH, Shade D, Wordinger RJ, Yorio T, Clark AF, Agarwal N (2001) Characterization of a transformed rat retinal ganglion cell line. Mol Brain Res 86:1–12PubMedCrossRefGoogle Scholar
  16. Li J, Dong ZZ, Liu BQ, Zhuo YH, Sun XR, Yang ZK, Ge J, Tan ZQ (2011) Hypoxia induces beta-amyloid in association with death of RGC-5 cells in culture. Biochem Biophys Res Commun 410:40–44PubMedCrossRefGoogle Scholar
  17. Mamiya T, Ukai M (2001) [gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol 134:1597–1599PubMedCrossRefGoogle Scholar
  18. McKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease? Front Biosci 1:1140–1156CrossRefGoogle Scholar
  19. McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087PubMedGoogle Scholar
  20. Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147PubMedCrossRefGoogle Scholar
  21. Sponne I, Fifre A, Koziel V, Kriem B, Oster T, Pillot T (2004) Humanin rescues cortical neurons from prion-peptide-induced apoptosis. Mol Cell Neurosci 25:95–102PubMedCrossRefGoogle Scholar
  22. Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S (2002) Alzheimer’s disease-related insults. Neurosci Lett 324:227–231PubMedCrossRefGoogle Scholar
  23. Tamura H, Kawakami H, Kanamoto T, Tamura H, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83PubMedCrossRefGoogle Scholar
  24. Tezel G, Wax MB (2004) Hypoxia-inducible factor 1 alpha in the glaucomatous retinal and optic nerve head. Arch Ophthalmol 122:1348–1356PubMedCrossRefGoogle Scholar
  25. Wostyn P, Audenaert K, De DPP (2009) Alzheimer’s disease and glaucoma: is there a causal relationship? Br J Ophthalmol 93:1557–1559PubMedCrossRefGoogle Scholar
  26. Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078–7085PubMedGoogle Scholar
  27. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H (2005) Vitreous fluid levels of beta-amyloid(1–42) and tau in patients with retinal diseases. Jpn J Ophthalmol 49:106–108PubMedCrossRefGoogle Scholar
  28. Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC (2005) Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem 280:15815–15824PubMedCrossRefGoogle Scholar
  29. Zhu X, Zhou W, Cui Y, Zhu L, Li J, Xia Z, Shao B, Wang H, Chen H (2009) Muscarinic activation attenuates abnormal processing of beta-amyloid precursor protein induced by cobalt chloride-mimetic hypoxia in retinal ganglion cells. Biochem Biophys Res Commun 384:110–113PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jie Men
    • 1
  • Xiaohui Zhang
    • 2
  • Yang Yang
    • 1
  • Dianwen Gao
    • 1
    Email author
  1. 1.Department of Ophthalmology, Shengjing HospitalChina Medical UniversityShenyangChina
  2. 2.Department of OphthalmologyHarbin 242 HospitalHarbinChina

Personalised recommendations