Journal of Molecular Neuroscience

, Volume 46, Issue 3, pp 569–577 | Cite as

Effect of Sodium Valproate Administration on Brain Neprilysin Expression and Memory in Rats

  • Natalia N. Nalivaeva
  • Nikolai D. Belyaev
  • David I. Lewis
  • Alasdair R. Pickles
  • Natalia Z. Makova
  • Daria I. Bagrova
  • Nadezhda M. Dubrovskaya
  • Svetlana A. Plesneva
  • Igor A. Zhuravin
  • Anthony J. Turner
Article

Abstract

Alzheimer's disease (AD) is accompanied by memory loss due to neuronal cell death caused by toxic amyloid β-peptide (Aβ) aggregates. In the healthy brain, a group of amyloid-degrading enzymes including neprilysin (NEP) maintain Aβ levels at physiologically low concentrations but, with age and under some pathological conditions, expression and activity of these enzymes decline predisposing to late-onset AD. Hence, up-regulation of NEP might be a viable strategy for prevention of Aβ accumulation and development of the disease. As we have recently shown, inhibitors of histone deacetylases, in particular, valproic acid (VA), were capable of up-regulating NEP expression and activity in human neuroblastoma SH-SY5Y cell lines characterised by very low levels of NEP. In the present study, analysing the effect of i.p. injections of VA to rats, we have observed up-regulation of expression and activity of NEP in rat brain structures, in particular, in the hippocampus. This effect was brain region- and age-specific. Administration of VA has also restored NEP activity and memory deficit in adult rats caused by prenatal hypoxia. This suggests that VA and more specific HDAC inhibitors can be considered as potential pharmaceutical agents for up-regulation of NEP activity and improvement of cognitive functions of ageing brain.

Keywords

AICD Alzheimer's disease Amyloid-precursor protein (APP) Histone-deacetylase (HDAC) Hippocampus Cortex Memory Neprilysin Novel object recognition test Prenatal hypoxia Valproic acid 

References

  1. Alves da Costa C, Sunyach C, Pardossi-Piquard R et al (2006) Presenilin-dependent γ-secretase-mediated control of p53-associated cell death in Alzheimer's disease. J Neurosci 26:6377–6385PubMedCrossRefGoogle Scholar
  2. Anderova M, Vorisek I, Pivonkova H et al (2011) Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J Cereb Blood Flow Metab 31:894–907PubMedCrossRefGoogle Scholar
  3. Aydin D, Filippov MA, Tschäpe JA et al (2011) Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex. BMC Genomics 12:160PubMedCrossRefGoogle Scholar
  4. Barnes K, Turner AJ, Kenny AJ (1992) Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase A (angiotensin converting enzyme) in the pig brain: a study using subcellular fractionation and electron microscopic immunocytochemistry. J Neurochem 58:2088–2096PubMedCrossRefGoogle Scholar
  5. Belyaev ND, Kellett KA, Beckett C et al (2010) The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J Biol Chem 285:41443–41454PubMedCrossRefGoogle Scholar
  6. Belyaev ND, Nalivaeva NN, Makova NZ et al (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer's disease. EMBO Rep 10:94–100PubMedCrossRefGoogle Scholar
  7. Caccamo A, Oddo S, Sugarman MC et al (2005) Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 26:645–654PubMedCrossRefGoogle Scholar
  8. Cao X, Südhof TC (2004) Dissection of amyloid-β precursor protein-dependent transcriptional transactivation. J Biol Chem 279:24601–24611PubMedCrossRefGoogle Scholar
  9. Carson JA, Turner AJ (2002) Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem 81:1–8PubMedCrossRefGoogle Scholar
  10. Chen AC, Selkoe DJ (2007) Response to: Pardossi-Piquard et al., “Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP.” Neuron 46:541–554, 53: 479–483Google Scholar
  11. Dubrovskaya NM, Nalivaeva NN, Plesneva SA et al (2009) Changes in the activity of amyloid-degrading metallopeptidases leads to disruption of memory in rats. Zh Vyssh Nerv Deiat Im I P Pavlova 59:630–638Google Scholar
  12. Dubrovskaya NM, Nalivaeva NN, Turner AJ et al (2006) Effects of an inhibitor of α-secretase, which metabolizes the amyloid peptide precursor, on memory formation in rats. Neurosci Behav Physiol 36:911–913PubMedCrossRefGoogle Scholar
  13. Dubrovskaya NM, Zhuravin IA (2010) Ontogenetic characteristics of behavior in rats subjected to hypoxia on day 14 or day 18 of embryogenesis. Neurosci Behav Physiol 40:231–238PubMedCrossRefGoogle Scholar
  14. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59PubMedCrossRefGoogle Scholar
  15. Erdos EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3:145–151PubMedGoogle Scholar
  16. Fischer A, Sananbenesi F, Wang X et al (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182PubMedCrossRefGoogle Scholar
  17. Fischer A, Sananbenesi F, Mungenast A et al (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617PubMedCrossRefGoogle Scholar
  18. Fisk L, Nalivaeva NN, Boyle JP et al (2007) Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 32:1741–1748PubMedCrossRefGoogle Scholar
  19. Fulcher IS, Matsas R, Turner AJ et al (1982) Kidney neutral endopeptidase and the hydrolysis of enkephalin by synaptic membranes show similar sensitivity to inhibitors. Biochem J 203:519–522PubMedGoogle Scholar
  20. Hama E, Saido TC (2005) Etiology of sporadic Alzheimer's disease: somatostatin, neprilysin, and amyloid beta peptide. Med Hypotheses 65:498–500PubMedCrossRefGoogle Scholar
  21. Hardy J (2009) The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J Neurochem 110:1129–1134PubMedCrossRefGoogle Scholar
  22. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–185PubMedCrossRefGoogle Scholar
  23. Hébert SS, Serneels L, Tolia A et al (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep 7:739–745Google Scholar
  24. Hong Y, Beckett C, Belyaev ND et al (2011) The impact of amyloid precursor protein signalling and histone deacetylase inhibition on neprilysin expression in human prostate cells. Int J Cancer. doi:10.1002/ijc.26028. [Epub ahead of print]
  25. Iwata N, Tsubuki S, Takaki Y et al (2000) Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150PubMedCrossRefGoogle Scholar
  26. Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3:166–179PubMedGoogle Scholar
  27. Kimberly WT, Zheng JB, Guénette SY et al (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276:40288–40292Google Scholar
  28. Konietzko U (2011) AICD Nuclear signaling and its possible contribution to Alzheimer's disease. Curr Alzheimer Res (in press)Google Scholar
  29. Lazarov O, Robinson J, Tang YP et al (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120:701–713PubMedCrossRefGoogle Scholar
  30. Lefranc-Jullien S, Sunyach C, Checler F (2006) APPε, the ε-secretase-derived N-terminal product of the β-amyloid precursor protein, behaves as a type I protein and undergoes α-, β-, and γ-secretase cleavages. J Neurochem 97:807–817Google Scholar
  31. Liang K, Yang L, Yin C et al (2010) Estrogen stimulates degradation of β-amyloid peptide by up-regulating neprilysin. J Biol Chem 285:935–942PubMedCrossRefGoogle Scholar
  32. Matsas R, Kenny AJ, Turner AJ (1986) An immunohistochemical study of endopeptidase-24.11 (“enkephalinase”) in the pig nervous system. Neuroscience 18:991–1012PubMedCrossRefGoogle Scholar
  33. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 330:1774PubMedCrossRefGoogle Scholar
  34. Mello PB, Benetti F, Cammarota M et al (2008) Effects of acute and chronic physical exercise and stress on different types of memory in rats. An Acad Bras Cienc 80:301–309PubMedCrossRefGoogle Scholar
  35. Monti B, Polazzi E, Contestabile A (2009) Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2:95–109PubMedCrossRefGoogle Scholar
  36. Nalivaeva NN, Belyaev ND, Turner AJ (2009) Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 30:509–514PubMedCrossRefGoogle Scholar
  37. Nalivaeva NN, Fisk L, Kochkina EG et al (2004) Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci 1035:21–33CrossRefGoogle Scholar
  38. Nalivaeva NN, Fisk LR, Belyaev ND et al (2008) Amyloid-degrading enzymes as therapeutic targets in Alzheimer's disease. Curr Alzheimer Res 5:212–224PubMedCrossRefGoogle Scholar
  39. Pardossi-Piquard R, Petit A, Kawarai T et al (2005) Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP. Neuron 46:541–554PubMedCrossRefGoogle Scholar
  40. Qian YR, Lee MJ, Hwang S et al (2010) Neuroprotection by valproic acid in mouse models of permanent and transient focal cerebral ischemia. Korean J Physiol Pharmacol 14:435–440PubMedCrossRefGoogle Scholar
  41. Qing H, He G, Ly PT et al (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. J Exp Med 205:2781–2789PubMedCrossRefGoogle Scholar
  42. Saito T, Iwata N, Tsubuki S et al (2005) Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat Med 11:434–439PubMedCrossRefGoogle Scholar
  43. Schettini G, Govoni S, Racchi M et al (2010) Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role—relevance for Alzheimer pathology. J Neurochem 115:1299–1308PubMedCrossRefGoogle Scholar
  44. Tremolizzo L, Carboni G, Ruzicka WB et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100PubMedCrossRefGoogle Scholar
  45. Turner AJ, Belyaev ND, Nalivaeva NN (2011) Mediator: the missing link in amyloid precursor protein nuclear signalling. EMBO Rep 12:180–181PubMedCrossRefGoogle Scholar
  46. Venkataramani V, Rossner C, Iffland L et al (2010) Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the Alzheimer amyloid precursor protein. J Biol Chem 285:10678–10689PubMedCrossRefGoogle Scholar
  47. Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar
  48. Wang S, Wang R, Chen L et al (2010) Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain. J Neurochem 115:47–57PubMedCrossRefGoogle Scholar
  49. Wang Z, Yang D, Zhang X et al (2011a) Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 6(4):e19229PubMedCrossRefGoogle Scholar
  50. Wang Z, Leng Y, Tsai LK et al (2011b) Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31:52–57PubMedCrossRefGoogle Scholar
  51. Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol 18:253–266CrossRefGoogle Scholar
  52. Xu X, Zhou H, Boyer TG (2011) Mediator is a transducer of amyloid-precursor-protein-dependent nuclear signalling. EMBO Rep 12:216–222PubMedCrossRefGoogle Scholar
  53. Yildirim E, Zhang Z, Uz T et al (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci Lett 345:141–143PubMedCrossRefGoogle Scholar
  54. Zhang XZ, Li XJ, Zhang HY (2010) Valproic acid as a promising agent to combat Alzheimer's disease. Brain Res Bull 81:3–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Natalia N. Nalivaeva
    • 1
    • 3
  • Nikolai D. Belyaev
    • 1
  • David I. Lewis
    • 2
  • Alasdair R. Pickles
    • 2
  • Natalia Z. Makova
    • 1
  • Daria I. Bagrova
    • 3
  • Nadezhda M. Dubrovskaya
    • 3
  • Svetlana A. Plesneva
    • 3
  • Igor A. Zhuravin
    • 3
  • Anthony J. Turner
    • 1
  1. 1.Institute of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUnited Kingdom
  2. 2.Institute of Membrane and Systems Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUnited Kingdom
  3. 3.I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RASSaint PetersburgRussia

Personalised recommendations