The Multiple Faces of Valosin-Containing Protein-Associated Diseases: Inclusion Body Myopathy with Paget’s Disease of Bone, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis

  • Angèle Nalbandian
  • Sandra Donkervoort
  • Eric Dec
  • Mallikarjun Badadani
  • Veeral Katheria
  • Prachi Rana
  • Christopher Nguyen
  • Jogeshwar Mukherjee
  • Vincent Caiozzo
  • Barbara Martin
  • Giles D. Watts
  • Jouni Vesa
  • Charles Smith
  • Virginia E. Kimonis
Article

Abstract

Inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia (IBMPFD) is a progressive, fatal genetic disorder with variable penetrance, predominantly affecting three main tissue types: muscle (IBM), bone (PDB), and brain (FTD). IBMPFD is caused by mutations in the ubiquitously expressed valosin-containing protein (VCP) gene, a member of the AAA-ATPase superfamily. The majority of individuals who develop IBM have progressive proximal muscle weakness. Muscle biopsies reveal rimmed vacuoles and inclusions that are ubiquitin- and TAR DNA binding protein-43 (TDP-43)-positive using immunohistochemistry. PDB, seen in half the individuals, is caused by overactive osteoclasts and is associated clinically with pain, elevated serum alkaline phosphatase, and X-ray findings of coarse trabeculation and sclerotic lesions. FTD diagnosed at a mean age of 55 years in a third of individuals is characterized clinically by comprehension deficits, dysnomia, dyscalculia, and social unawareness. Ubiquitin- and TDP-43-positive neuronal inclusions are also found in the brain. Genotype–phenotype correlations are difficult with marked intra-familial and inter-familial variations being seen. Varied phenotypes within families include frontotemporal dementia, amyotrophic lateral sclerosis, Parkinsonism, myotonia, cataracts, and anal incompetence, among others. Cellular and animal models indicate pathogenetic disturbances in IBMPFD tissues including altered protein degradation, autophagy pathway alterations, apoptosis, and mitochondrial dysfunction. Currently, mouse and drosophila models carrying VCP mutations provide insights into the human IBMPFD pathology and are useful as tools for preclinical studies and testing of therapeutic strategies. In this review, we will explore the pathogenesis and clinical phenotype of IBMPFD caused by VCP mutations.

Keywords

Valosin containing protein Amyotrophic lateral sclerosis Inclusion body myopathy Paget’s disease of bone Frontotemporal dementia Autophagy NFKB Ubiquitin TAR DNA Binding Protein-43 Endoplasmic reticulum associated degradation 

References

  1. Acharyya S et al (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117:889–901PubMedCrossRefGoogle Scholar
  2. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–208PubMedCrossRefGoogle Scholar
  3. Alexandru G et al (2008) UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134:804–816PubMedCrossRefGoogle Scholar
  4. Alonso A et al (2009) Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol 16:745–751PubMedCrossRefGoogle Scholar
  5. Arnold SE et al (2000) Quantitative neurohistological features of frontotemporal degeneration. Neurobiol Aging 21:913–919PubMedCrossRefGoogle Scholar
  6. Badadani M et al (2010) VCP associated inclusion body myopathy and Paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One 5:1–15CrossRefGoogle Scholar
  7. Balch WE et al (2008) Adapting proteostasis for disease intervention. Science 319:916–919PubMedCrossRefGoogle Scholar
  8. Bersano A et al (2009) Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiol Aging 30:752–758PubMedCrossRefGoogle Scholar
  9. Bhatnagar S, Kumar A (2010) Therapeutic targeting of signaling pathways in muscular dystrophy. J Mol Med 88:155–166PubMedCrossRefGoogle Scholar
  10. Cairns NJ et al (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171:227–240PubMedCrossRefGoogle Scholar
  11. Chang YC et al (2011) Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet 7:e1001288PubMedCrossRefGoogle Scholar
  12. Confalonieri F, Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. Bioessays 17:639–650PubMedCrossRefGoogle Scholar
  13. Crippa V et al (2010a) A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy 6:958–960PubMedCrossRefGoogle Scholar
  14. Crippa V et al (2010b) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456PubMedCrossRefGoogle Scholar
  15. Custer SK et al (2010) Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet 19:1741–1755PubMedCrossRefGoogle Scholar
  16. Dai RM et al (1998) Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin–proteasome-mediated degradation of IkappaBalpha. J Biol Chem 273:3562–3573PubMedCrossRefGoogle Scholar
  17. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3:740–744PubMedCrossRefGoogle Scholar
  18. Daroszewska A, Ralston SH (2006) Mechanisms of disease: genetics of Paget's disease of bone and related disorders. Nat Clin Pract Rheumatol 2:270–277PubMedCrossRefGoogle Scholar
  19. DeLaBarre B et al (2006) Central pore residues mediate the p97/VCP activity required for ERAD. Mol Cell 22:451–462PubMedCrossRefGoogle Scholar
  20. Djamshidian A et al (2009) A novel mutation in the VCP gene (G157R) in a German family with inclusion-body myopathy with Paget disease of bone and frontotemporal dementia. Muscle Nerve 39:389–391PubMedCrossRefGoogle Scholar
  21. Fanganiello RD et al (2011) A Brazilian family with hereditary inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Braz J Med Biol Res 44:374–380PubMedCrossRefGoogle Scholar
  22. Farpour F et al (2011) Radiological features of Paget disease of bone associated with VCP myopathy. PMID: 21643886Google Scholar
  23. Fernandez-Saiz V, Buchberger A (2010) Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep 11:479–485PubMedCrossRefGoogle Scholar
  24. Gidaro T et al (2008) An Italian family with inclusion-body myopathy and frontotemporal dementia due to mutation in the VCP gene. Muscle Nerve 37:111–114PubMedCrossRefGoogle Scholar
  25. Graham KM et al (2010) Excessive collagen accumulation in dystrophic (mdx) respiratory musculature is independent of enhanced activation of the NF-kappaB pathway. J Neurol Sci 294:43–50PubMedCrossRefGoogle Scholar
  26. Guyant-Marechal L et al (2006) Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurology 67:644–651PubMedCrossRefGoogle Scholar
  27. Haslbeck KM et al (2005) The RAGE pathway in inflammatory myopathies and limb girdle muscular dystrophy. Acta Neuropathol 110:247–254PubMedCrossRefGoogle Scholar
  28. Haubenberger D et al (2005) Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology 65:1304–1305PubMedCrossRefGoogle Scholar
  29. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  30. Hubbers CU et al (2007) Pathological consequences of VCP mutations on human striated muscle. Brain 130:381–393PubMedCrossRefGoogle Scholar
  31. Janiesch PC et al (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9:379–390PubMedCrossRefGoogle Scholar
  32. Jarosch E et al (2002) Protein dislocation from the endoplasmic reticulum—pulling out the suspect. Traffic 3:530–536PubMedCrossRefGoogle Scholar
  33. Johnson JO et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864PubMedCrossRefGoogle Scholar
  34. Ju JS, Weihl CC (2010) Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet 19:R38–R45PubMedCrossRefGoogle Scholar
  35. Kakizuka A (2008) Roles of VCP in human neurodegenerative disorders. Biochem Soc Trans 36:105–108PubMedCrossRefGoogle Scholar
  36. Kaleem M et al (2007) Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease. Neurodegener Dis 4:376–381PubMedCrossRefGoogle Scholar
  37. Kim EJ, Park YE, Kim DS et al (2011) Inclusion body myopathy with Paget disease of bone and frontotemporal dementia linked to VCP p.Arg155Cys in a Korean family. Arch Neurol 68:787–796PubMedCrossRefGoogle Scholar
  38. Kimonis VE et al (2008a) VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta 1782:744–748PubMedGoogle Scholar
  39. Kimonis VE et al (2000) Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med 2:232–241PubMedCrossRefGoogle Scholar
  40. Kimonis VE et al (2008b) Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A 146A:745–757PubMedCrossRefGoogle Scholar
  41. Kondo H et al (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388:75–78PubMedCrossRefGoogle Scholar
  42. Korolchuk VI et al (2009) Autophagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. Mol Cell 33:517–527PubMedCrossRefGoogle Scholar
  43. Kovach MJ et al (2001) Clinical delineation and localization to chromosome 9p13.3-p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Mol Genet Metab 74:458–475PubMedCrossRefGoogle Scholar
  44. Krause S et al (2007) Brain imaging and neuropsychology in late-onset dementia due to a novel mutation (R93C) of valosin-containing protein. Clin Neuropathol. 26:232–240PubMedGoogle Scholar
  45. Kumar KR et al (2010) Two Australian families with inclusion-body myopathy, Paget's disease of bone and frontotemporal dementia: novel clinical and genetic findings. Neuromuscul Disord 20:330–334PubMedCrossRefGoogle Scholar
  46. Kwiatkowski TJ Jr et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  47. Lagier-Tourenne C et al (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRefGoogle Scholar
  48. Leigh PN, Wijesekera LC (2010) Motor neuron disease: focusing the mind on ALS: updated practice parameters. Nat Rev Neurol 6:191–192PubMedCrossRefGoogle Scholar
  49. Leyton CE, Hodges JR (2010) Frontotemporal dementias: recent advances and current controversies. Ann Indian Acad Neurol 13:S74–S80PubMedGoogle Scholar
  50. Ling SC et al (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107:13318–13323PubMedCrossRefGoogle Scholar
  51. Logroscino G et al (2008) Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry 79:6–11PubMedCrossRefGoogle Scholar
  52. Lomen-Hoerth C et al (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094–1097PubMedGoogle Scholar
  53. McGuire V et al (1996) Incidence of amyotrophic lateral sclerosis in three counties in western Washington state. Neurology 47:571–573PubMedGoogle Scholar
  54. Meyer HH et al (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192PubMedCrossRefGoogle Scholar
  55. Miller TD et al (2009) Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD): clinical features including sphincter disturbance in a large pedigree. J Neurol Neurosurg Psychiatry 80:583–584PubMedCrossRefGoogle Scholar
  56. Mizushima N et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedCrossRefGoogle Scholar
  57. Muller JM et al (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354:459–465PubMedCrossRefGoogle Scholar
  58. Neary D et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedGoogle Scholar
  59. Pasquali L et al (2010) The role of autophagy: what can be learned from the genetic forms of amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 9:268–278PubMedGoogle Scholar
  60. Rabinovich E et al (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634PubMedCrossRefGoogle Scholar
  61. Rabouille C et al (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92:603–610PubMedCrossRefGoogle Scholar
  62. Rape M et al (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107:667–677PubMedCrossRefGoogle Scholar
  63. Reid IR et al (2005) Comparison of a single infusion of zoledronic acid with risedronate for Paget's disease. N Engl J Med 353:898–908PubMedCrossRefGoogle Scholar
  64. Ritson GP et al (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30:7729–7739PubMedCrossRefGoogle Scholar
  65. Roberson ED (2011) Contemporary approaches to Alzheimer's disease and frontotemporal dementia. Methods Mol Biol 670:1–9PubMedCrossRefGoogle Scholar
  66. Rohrer JD, Warren JD, Reiman D et al (2011) A novel exon 2 I27V VCP variant is associated with dissimilar clinical syndromes. J Neurol 258:1494–1496PubMedCrossRefGoogle Scholar
  67. Rusten TE, Filimonenko M, Rodahl LM et al (2008) ESCRTing autophagic clearance of aggregating proteins. Autophagy 4:233–236Google Scholar
  68. Schroder R et al (2005) Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 57:457–461PubMedCrossRefGoogle Scholar
  69. Shaw CE (2010) Capturing VCP: another molecular piece in the ALS jigsaw puzzle. Neuron 68:812–814PubMedCrossRefGoogle Scholar
  70. Siciliano G et al (2010) Clinical trials for neuroprotection in ALS. CNS Neurol Disord Drug Targets 9:305–313PubMedGoogle Scholar
  71. Siris E et al (1996) Comparative study of alendronate versus etidronate for the treatment of Paget's disease of bone. J Clin Endocrinol Metab 81:961–967PubMedCrossRefGoogle Scholar
  72. Spina et al (2008) Frontotemporal dementia associated with a valosin-containing protein mutation: report of three families. The FASEB Journal 22:58.4 (Abstract)Google Scholar
  73. Sreedharan J et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  74. Stojkovic T et al (2009) Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget's disease of bone and frontotemporal dementia. Neuromuscul Disord 19:316–323PubMedCrossRefGoogle Scholar
  75. Strong MJ et al (2003) Cognitive impairment, frontotemporal dementia, and the motor neuron diseases. Ann Neurol 54(Suppl 5):S20–S23PubMedCrossRefGoogle Scholar
  76. Traynor BJ et al (1999) Incidence and prevalence of ALS in Ireland, 1995–1997: a population-based study. Neurology 52:504–509PubMedGoogle Scholar
  77. Turner RS et al (1996) Clinical, neuroimaging, and pathologic features of progressive nonfluent aphasia. Ann Neurol 39:166–173PubMedCrossRefGoogle Scholar
  78. van der Zee J et al (2009) Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology 73:626–632PubMedCrossRefGoogle Scholar
  79. Vance C et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211PubMedCrossRefGoogle Scholar
  80. Vesa J et al (2009) Valosin containing protein associated inclusion body myopathy: abnormal vacuolization, autophagy and cell fusion in myoblasts. Neuromuscul Disord 19:766–772PubMedCrossRefGoogle Scholar
  81. Wang Q et al (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146:44–57PubMedCrossRefGoogle Scholar
  82. Watts GD et al (2003) Clinical and genetic heterogeneity in chromosome 9p associated hereditary inclusion body myopathy: exclusion of GNE and three other candidate genes. Neuromuscul Disord 13:559–567PubMedCrossRefGoogle Scholar
  83. Watts GD et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381PubMedCrossRefGoogle Scholar
  84. Watts GD et al (2007) Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet 72:420–426PubMedCrossRefGoogle Scholar
  85. Weihl CC et al (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15:189–199PubMedCrossRefGoogle Scholar
  86. Weihl CC et al (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16:919–928PubMedCrossRefGoogle Scholar
  87. Weihl CC et al (2009) Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 19:308–315PubMedCrossRefGoogle Scholar
  88. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811PubMedCrossRefGoogle Scholar
  89. Ye Y et al (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656PubMedCrossRefGoogle Scholar
  90. Zhukareva V et al (2001) Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 49:165–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Angèle Nalbandian
    • 1
  • Sandra Donkervoort
    • 1
  • Eric Dec
    • 1
  • Mallikarjun Badadani
    • 1
  • Veeral Katheria
    • 1
  • Prachi Rana
    • 1
  • Christopher Nguyen
    • 1
  • Jogeshwar Mukherjee
    • 2
  • Vincent Caiozzo
    • 3
  • Barbara Martin
    • 4
  • Giles D. Watts
    • 5
  • Jouni Vesa
    • 1
  • Charles Smith
    • 4
  • Virginia E. Kimonis
    • 1
  1. 1.Department of Pediatrics, Division of Genetics and Metabolism, 2501 Hewitt HallUniversity of California–IrvineIrvineUSA
  2. 2.Preclinical Imaging Center, Department of Psychiatry & Human Behavior, 162 Irvine HallUniversity of California–IrvineIrvineUSA
  3. 3.Department of Physiology and Biophysics, and Department of Orthopedics, College of Health SciencesUniversity of CaliforniaIrvineUSA
  4. 4.Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  5. 5.Cell Biology and Biochemistry, School of Medicine, Health Policy and Practice, Biomedical Research CentreUniversity of East AngliaNorwichUK

Personalised recommendations