The Frontotemporal Syndromes of ALS. Clinicopathological Correlates

Article

Abstract

Amyotrophic lateral sclerosis (ALS) is increasingly recognized to be a syndromic disorder in which the degeneration of motor neurons is frequently accompanied by a range of syndromes reflective of frontotemporal dysfunction, including a behavioural or cognitive syndrome, a dysexecutive syndrome or a frontotemporal dementia. Both sporadic and familial variants of ALS can be affected. The anatomic substrate of each is a frontotemporal lobar degeneration (FTLD) characterized by superficial linear spongiosus, atrophy and neuronal loss, and both astrocytic and neuronal deposition of TDP-43 as pathological inclusions. Largely unrecognized however is the extent of alterations in tau protein metabolism, particularly in cognitively impaired patients (ALSci). This includes hyper-phosphorylation (pThr175) and tau phosphatase resistance, increased fibril formation ex vivo of tau isolated from ALSci and tau immunoreactive aggregates in neurons, dystrophic neurites and astrocytes. In this article, we will review the contemporary clinical, genetic and neuropathological characteristics of the frontotemporal syndromes of ALS and propose that as opposed to being a FTLD in which TDP-43 is the primary disease protein (FTLD-TDP) and that the frontotemporal syndromes of ALS represent a hybrid of both TDP-43 and tau pathology.

Keywords

TDP-43 Microtubule-associated tau protein Frontotemporal lobar degeneration Neuroimaging 

Notes

Acknowledgements

Research supported by the Michael Halls endowment.

References

  1. Al-Chalabi A, Enayat ZE, Bakker MC et al (1996) Association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Lancet 347:159–160PubMedCrossRefGoogle Scholar
  2. Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61:435–445PubMedCrossRefGoogle Scholar
  3. Andersen PM, Nilsson P, Keränen M-L et al (1997) Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain 120:1723–1737PubMedCrossRefGoogle Scholar
  4. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRefGoogle Scholar
  5. Bachus R, Bader S, Gessner R, Ludolph AC (1997) Lack of association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Ann Neurol 41:417PubMedCrossRefGoogle Scholar
  6. Battistini S, Giannini F, Greco G et al (2005) SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study. J Neurol 252:782–788PubMedCrossRefGoogle Scholar
  7. Blair IP, Williams KL, Warraich ST et al (2010) FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry 81:639–645PubMedCrossRefGoogle Scholar
  8. Boxer AL, Mackenzie IR, Boeve BF et al (2011) Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry 82:196–203PubMedCrossRefGoogle Scholar
  9. Broustal O, Camuzat A, Guillot-Noel L et al (2010) FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. J Alzheimers Dis 22:765–769PubMedGoogle Scholar
  10. Colombrita C, Onesto E, Tiloca C, Ticozzi N, Silani V, Ratti A (2011) RNA-binding proteins and RNA metabolism: a new scenario in the pathogenesis of amyotrophic lateral sclerosis. Arch Ital Biol 149:83–99PubMedGoogle Scholar
  11. Donaghy C, Thurtell MJ, Pioro EP, Gibson JM, Leigh RJ (2011) Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases. J Neurol Neurosurg Psychiatry 82:110–116PubMedCrossRefGoogle Scholar
  12. Drory VE, Birnbaum M, Korczyn AD, Chapman J (2001) Association of APOE ε4 allele with survival in amyotrophic lateral sclerosis. J Neurol Sci 190:17–20PubMedCrossRefGoogle Scholar
  13. Forno LS, Langston JW, Herrick MK, Wilson JD, Murayama S (2002) Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type. Acta Neuropathol 103:599–606PubMedCrossRefGoogle Scholar
  14. Gellera C, Colobrita C, Ticozzi N et al (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9:33–40PubMedCrossRefGoogle Scholar
  15. Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641PubMedCrossRefGoogle Scholar
  16. Gibbons ZC, Snowden JS, Thompson JC, Happe F, Richardson A, Neary D (2007) Inferring thought and action in motor neurone disease. Neuropsychologia 45:1196–1207PubMedCrossRefGoogle Scholar
  17. Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32:9–16PubMedCrossRefGoogle Scholar
  18. Girardi A, Macpherson SE, Abrahams S (2011) Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 25:53–65PubMedCrossRefGoogle Scholar
  19. Gitcho MA, Bigio EH, Mishra M et al (2009) TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol 118:633–645PubMedCrossRefGoogle Scholar
  20. Gohar M, Yang W, Strong WL, Volkening K, Leystra-Lantz C, Strong MJ (2009) Tau phosphorylation at 175Thr leads to fibril formation. Implications for the tauopathy of amyotrophic lateral sclerosis. J Neurochem 108:634–643PubMedCrossRefGoogle Scholar
  21. Grace GM, Orange JB, Rowe A, Findlater K, Freedman M, Strong MJ (2011) Neuropsychological functioning in PLS: a comparison with ALS. Can J Neurol Sci 38:88–97PubMedGoogle Scholar
  22. Hamilton RL, Bowser R (2004) Alzheimer disease pathology in amyotrophic lateral sclerosis. Acta Neuropathol 107:515–522PubMedCrossRefGoogle Scholar
  23. Hirano A, Malamud N, Elizan TS, Kurland LT (1966) Amyotrophic lateral sclerosis and Parkinsonism–dementia complex on Guam. Further pathologic studies. Arch Neurol 15:35–51PubMedGoogle Scholar
  24. Hirano A, Arumugasamy N, Zimmerman HM (1967) Amyotrophic lateral sclerosis. A comparison of Guam and classical cases. Arch Neurol 16:357–363PubMedGoogle Scholar
  25. Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganglionic alterations: neurofibrillary tangles, granulovacuolar bodies, and “rod-like” structures in Guam amyotrophic lateral sclerosis and parkinsonism–dementia complex. J Neuropathol Exp Neurol 27:167–182PubMedCrossRefGoogle Scholar
  26. Hulette CM, Pericak-Vance MA, Roses AD et al (1999) Neuropathological features of frontotemporal dementia and parkinsonism linked to chromosome 17q21-22 (FTDP-17): Duke family 1684. J Neuropathol Exp Neurol 58:859–866PubMedCrossRefGoogle Scholar
  27. Ito H, Nakamura M, Komure O et al (2011) Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol 122:223–229PubMedCrossRefGoogle Scholar
  28. Johansson A, Engler H, Blomquist G et al (2007) Evidence for astrocytosis in ALS demonstrated by [11C](l)-deprenyl-D2 PET. J Neurol Sci 255:17–22PubMedCrossRefGoogle Scholar
  29. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  30. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRefGoogle Scholar
  31. Lillo P, Garcin B, Hornberger M, Bak TH, Hodges JR (2010) Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol 67:826–830PubMedCrossRefGoogle Scholar
  32. Lomen-Hoerth C, Strong MJ (2006) Cognition in amyotrophic lateral sclerosis. In: Mitsumoto H, Przedborksi S, Gordon P, De Bene M (eds) Amyotrophic lateral sclerosis. Marcel Dekker, London, pp 115–138Google Scholar
  33. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMedGoogle Scholar
  34. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094–1097PubMedGoogle Scholar
  35. Lynch T, Sano M, Marder KS et al (1994) Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology 44:1878–1884PubMedGoogle Scholar
  36. Mackenzie IR, Neumann M, Bigio EH et al (2010a) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  37. Mackenzie IR, Rademakers R, Neumann M (2010b) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007PubMedCrossRefGoogle Scholar
  38. Malamud N, Hirano A, Kurland LT (1961) Pathoanatomic changes in amyotrophic lateral sclerosis on Guam. Arch Neurol 5:401–415PubMedGoogle Scholar
  39. Martinaud O, Laquerrière A, Guyant-Maréchal L et al (2005) Frontotemporal dementia, motor neuron disease and tauopathy: clinical and neuropathological study in a family. Acta Neuropathol 110:84–92PubMedCrossRefGoogle Scholar
  40. Masè G, Ros S, Gemma A et al (2001) ALS with variable phenotypes in a six-generation family caused by leu144phe mutation in the SOD1 gene. J Neurol Sci 191:11–18PubMedCrossRefGoogle Scholar
  41. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455PubMedCrossRefGoogle Scholar
  42. Millecamps S, Salachas F, Cazeneuve C et al (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47:554–560PubMedCrossRefGoogle Scholar
  43. Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ (2009) Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy. Brain Res 1249:202–211PubMedCrossRefGoogle Scholar
  44. Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844PubMedCrossRefGoogle Scholar
  45. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRefGoogle Scholar
  46. Papps B, Abrahams S, Wicks P, Leigh PN, Goldstein LH (2005) Changes in memory for emotional material in amyotrophic lateral sclerosis (ALS). Neuropsychologia 43:1107–1114PubMedCrossRefGoogle Scholar
  47. Raaphorst J, de Visser M, Linssen WH, de Haan RJ, Schmand B (2010) The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph Lateral Scler 11:27–37PubMedCrossRefGoogle Scholar
  48. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590PubMedCrossRefGoogle Scholar
  49. Smith RG, Haverkamp LJ, Case S, Appel V, Appel SH (1996) Apolipoprotein E epsilon 4 in bulbar-onset motor neuron disease. Lancet 348:334–335PubMedCrossRefGoogle Scholar
  50. Strong MJ (2001) The evidence for ALS as a multisystems disorder of limited phenotypic expression. Can J Neurol Sci 28:283–298PubMedGoogle Scholar
  51. Strong MJ (2003) The basic aspects of therapeutics in amyotrophic lateral sclerosis. Pharmacol Ther 98:379–414PubMedCrossRefGoogle Scholar
  52. Strong MJ (2004) Recent developments in the biochemistry and pharmacotherapy of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 13:1593–1614PubMedCrossRefGoogle Scholar
  53. Strong MJ (2008) The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:323–338PubMedCrossRefGoogle Scholar
  54. Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288:1–12PubMedCrossRefGoogle Scholar
  55. Strong MJ, Gordon PH (2005) Primary lateral sclerosis, hereditary spastic paraplegia and amyotrophic lateral sclerosis—discrete entities or spectrum? Amyotroph Lateral Scler Other Motor Neuron Disord 6:8–16PubMedCrossRefGoogle Scholar
  56. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon R, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670PubMedGoogle Scholar
  57. Strong MJ, Yang W, Strong WL, Leystra-Lantz C, Jaffe H, Pant HC (2006) Tau protein hyperphosphorylation in sporadic ALS with cognitive impairment. Neurology 66:1770–1771PubMedCrossRefGoogle Scholar
  58. Strong MJ, Grace GM, Freedman M et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146PubMedCrossRefGoogle Scholar
  59. Sutedja NA, van der Schouw YT, Fischer K et al (2011) Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82:638–642PubMedCrossRefGoogle Scholar
  60. Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRefGoogle Scholar
  61. Turner MR, Cagnin A, Turkheimer FE et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–609PubMedCrossRefGoogle Scholar
  62. Turner MR, Hammers A, Al-Chalabi A et al (2005a) Distinct cerebral lesions in sporadic and ‘D90A’ SOD1 ALS: studies with [11C]flumazenil PET. Brain 128:1323–1329PubMedCrossRefGoogle Scholar
  63. Turner MR, Rabiner EA, Hammers A et al (2005b) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain 128:896–905PubMedCrossRefGoogle Scholar
  64. van Es MA, Diekstra FP, Baas F et al (2009) A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72:287–288PubMedCrossRefGoogle Scholar
  65. Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129:868–876PubMedCrossRefGoogle Scholar
  66. Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211PubMedCrossRefGoogle Scholar
  67. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814PubMedCrossRefGoogle Scholar
  68. Wicks P, Abrahams S, Papps B et al (2009) SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J Neurol 256:234–241PubMedCrossRefGoogle Scholar
  69. Wightman G, Anderson VER, Martin J et al (1992) Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett 139:269–274PubMedCrossRefGoogle Scholar
  70. Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107:3858–3863PubMedCrossRefGoogle Scholar
  71. Wilson CM, Grace GM, Munoz DG, He BP, Strong MJ (2001) Cognitive impairment in sporadic ALS. A pathological continuum underlying a multisystem disorder. Neurology 57:651–657PubMedGoogle Scholar
  72. Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer's disease—a review. Int J Clin Exp Pathol 4:147–155PubMedGoogle Scholar
  73. Yan J, Deng HX, Siddique N et al (2010) Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75:807–814PubMedCrossRefGoogle Scholar
  74. Yang W, Sopper MM, Leystra-Lantz C, Strong MJ (2003) Microtubule-associated tau protein positive neuronal and glial inclusions in amyotrophic lateral sclerosis. Neurology 61:1766–1773PubMedGoogle Scholar
  75. Yang W, Ang L-C, Strong MJ (2005) Tau protein aggregation in the frontal and entorhinal cortices as a function of aging. Dev Brain Res 156:127–138CrossRefGoogle Scholar
  76. Yang W, Leystra-Lantz C, Strong MJ (2008) Upregulation of GSK3β expression in frontal and temporal cortex of ALS with cognitive impairment (ALSci). Brain Res 1196:131–139PubMedCrossRefGoogle Scholar
  77. Zhou H, Huang C, Chen H et al (2010) Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6:e1000887PubMedCrossRefGoogle Scholar
  78. Zimmerman EK, Eslinger PJ, Simmons Z, Barrett AM (2007) Emotional perception deficits in amyotrophic lateral sclerosis. Cogn Behav Neurol 20:79–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Robarts Research Institute, Schulich School of Medicine & DentistryThe University of Western OntarioLondonCanada
  2. 2.University HospitalLondonCanada

Personalised recommendations