Mitochondrial Dysfunction as a Therapeutic Target in Progressive Supranuclear Palsy

  • Vincent Ries
  • Wolfgang H. Oertel
  • Günter U. Höglinger
Article

Abstract

Progressive supranuclear palsy (PSP) is a sporadic and progressive neurodegenerative disease, most often leading to a symmetric, akinetic-rigid syndrome with prominent postural instability, vertical supranuclear gaze palsy, and cognitive decline. It belongs to the family of tauopathies and involves both cortical and subcortical structures. There is evidence from laboratory as well as in vivo studies suggesting that mitochondrial energy metabolism is impaired in PSP. Furthermore, several findings suggest that a failure in mitochondrial energy production might act as an upstream event in the chain of pathological events leading to the aggregation of tau and neuronal cell death. Agents targeting mitochondrial dysfunction have already shown a positive effect in a phase II study; however, further studies to verify these results need to be conducted. This review will focus on the pathophysiological concept of mitochondrial dysfunction in PSP and its possible role as a therapeutic target.

Keywords

Progressive supranuclear palsy Mitochondrial respiratory chain Microtubule-associated protein tau Energy metabolism 

References

  1. Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without l-dopa in rotenone-induced Parkinsonism. Neuropharmacology 55:1340–1346PubMedCrossRefGoogle Scholar
  2. Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131:460–472PubMedCrossRefGoogle Scholar
  3. Albers DS, Augood SJ, Martin DM, Standaert DG, Vonsattel JP, Beal MF (1999) Evidence for oxidative stress in the subthalamic nucleus in PSP. J Neurochem 73:881–884PubMedCrossRefGoogle Scholar
  4. Albers DS, Swerdlow RH, Manfredi G et al (2001) Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol 168:196–198PubMedCrossRefGoogle Scholar
  5. Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869PubMedCrossRefGoogle Scholar
  6. Bresolin N, Bet L, Binda A et al (1988) Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10. Neurology 38:892–899PubMedGoogle Scholar
  7. Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatr 57:278–284PubMedCrossRefGoogle Scholar
  8. Cantuti-Castelvetri I, Keller-McGandy CE, Albers DS et al (2002) Expression and activity of antioxidants in the brain in progressive supranuclear palsy. Brain Res 930:170–181PubMedCrossRefGoogle Scholar
  9. Caparros-Lefebvre D, Elbaz A (1999) Possible relation of atypical Parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 354:281–286PubMedCrossRefGoogle Scholar
  10. Champy P, Höglinger GU, Feger J et al (2004) Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical Parkinsonism in Guadeloupe. J Neurochem 88:63–69PubMedCrossRefGoogle Scholar
  11. Chirichigno JW, Manfredi G, Beal MF, Albers DS (2002) Stress-induced mitochondrial depolarization and oxidative damage in PSP cybrids. Brain Res 951:31–35PubMedCrossRefGoogle Scholar
  12. Cleren C, Yang L, Lorenzo B et al (2008) Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem 104:1613–1621PubMedCrossRefGoogle Scholar
  13. Davey GP, Canevari L, Clark JB (1997) Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem 69:2564–2570PubMedCrossRefGoogle Scholar
  14. Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage 46:530–541PubMedCrossRefGoogle Scholar
  15. Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32:94–100CrossRefGoogle Scholar
  16. Di Monte DA, Harati Y, Jankovic J, Sandy MS, Jewell SA, Langston JW (1994) Muscle mitochondrial ATP production in progressive supranuclear palsy. J Neurochem 62:1631–1634PubMedCrossRefGoogle Scholar
  17. Divinski I, Mittelman L, Gozes I (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279:28531–28538PubMedCrossRefGoogle Scholar
  18. Divinski I, Holtser-Cochav M, Vulih-Schultzman I, Steingart RA, Gozes I (2006) Peptide neuroprotection through specific interaction with brain tubulin. J Neurochem 98:973–984PubMedCrossRefGoogle Scholar
  19. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB. A Frontal Assessment Battery at bedside. Neurology 55:1621–1626PubMedGoogle Scholar
  20. Escobar-Khondiker M, Höllerhage M, Muriel MP et al (2007) Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 27:7827–7837PubMedCrossRefGoogle Scholar
  21. Fernandez-Gomez FJ, Pastor MD, Garcia-Martinez EM et al (2006) Pyruvate protects cerebellar granular cells from 6-hydroxydopamine induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol Dis 24:296–307PubMedCrossRefGoogle Scholar
  22. Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA (1988) Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 24:399–406PubMedCrossRefGoogle Scholar
  23. Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. Am J Neuroradiol 30:1222–1226PubMedCrossRefGoogle Scholar
  24. Glenn OA, Henry RG, Berman JI et al (2003) DTI-based three-dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis. J Magn Reson Imag 18:641–648CrossRefGoogle Scholar
  25. Golbe LI (1997) A clinical rating scale and staging system for progressive supranuclear palsy. Neurology 48(Suppl):A326Google Scholar
  26. Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565PubMedCrossRefGoogle Scholar
  27. Gozes I (2010a) Davunetide (NAP) pharmacology: neuroprotection and tau. In: Martinez A (ed) Emerging drugs and targets for Alzheimer’s disease. Royal Society of Chemistry, Cambridge, pp 108–128CrossRefGoogle Scholar
  28. Gozes I (2010b) Tau pathology and future therapeutics. Curr Alzheimer Res 7:685–696PubMedCrossRefGoogle Scholar
  29. Gozes I, Stewart A, Morimoto B, Fox A, Sutherland K, Schmeche D (2009) Addressing Alzheimer’s disease tangles: from NAP to AL-108. Curr Alzheimer Res 6:455–460PubMedCrossRefGoogle Scholar
  30. Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186PubMedCrossRefGoogle Scholar
  31. Hauw JJ, Daniel SE, Dickson D et al (1994) Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 44:2015–2019PubMedGoogle Scholar
  32. Höglinger GU, Ferger J, Prigent A et al (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502PubMedCrossRefGoogle Scholar
  33. Höglinger GU, Lannuzel A, Escobar-Khondiker M et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95:930–939PubMedCrossRefGoogle Scholar
  34. Höllerhage M, Matusch A, Champy P et al (2009) Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 220:133–142PubMedCrossRefGoogle Scholar
  35. Iqbal K, Alonso Adel C, Grundke-Iqbal I (2008) Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14:365–370PubMedGoogle Scholar
  36. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69PubMedCrossRefGoogle Scholar
  37. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:161–170Google Scholar
  38. Knake S, Salat DH, Halgren E, Halko M, Greve DN, Grant PE (2009) Changes in white matter microstructure and patients with temporal lobe epilepsy due to hippocampal sclerosis. Epileptic Disord 11:244–250PubMedGoogle Scholar
  39. Knake S, Belke M, Menzler K et al (2010) In vivo demonstration of microstructural brain pathology in progressive supranuclear palsy: a DTI study using TBSS. Mov Disord 25:1232–1238PubMedCrossRefGoogle Scholar
  40. Lagendijk J, Ubbink JB, Vermaak WJ (1996) Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. J Lipid Res 37:67–75PubMedGoogle Scholar
  41. Lannuzel A, Michel PP, Höglinger GU et al (2003) The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121:287–296PubMedCrossRefGoogle Scholar
  42. Lannuzel A, Höglinger GU, Verhaeghe S et al (2007) Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 130:816–827PubMedCrossRefGoogle Scholar
  43. Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739:251–259PubMedGoogle Scholar
  44. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420PubMedCrossRefGoogle Scholar
  45. Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9PubMedGoogle Scholar
  46. Lodi R, Hart PE, Rajagopalan B et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49:590–596PubMedCrossRefGoogle Scholar
  47. Matthews RT, Yang L, Jenkins BG et al (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163PubMedGoogle Scholar
  48. Matthews RT, Ferrante RJ, Klivenyi P et al (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149PubMedCrossRefGoogle Scholar
  49. Menke T, Gille G, Reber F et al (2003) Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18:65–72PubMedCrossRefGoogle Scholar
  50. Mizuno Y, Ohta S, Tanaka M et al (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455PubMedCrossRefGoogle Scholar
  51. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri MAA (2007) N-Acetylaspartate in the CNS: from Neurodiagnostics to Neurobiology. Prog Neurobiol 81:89–131PubMedCrossRefGoogle Scholar
  52. Moon Y, Lee KH, Park JH, Geum D, Kim K (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93:1199–1208PubMedCrossRefGoogle Scholar
  53. Odetti P, Garibaldi S, Norese R et al (2000) Lipoperoxidation is selectively involved in progressive supranuclear palsy. J Neuropathol Exp Neurol 59:393–397PubMedGoogle Scholar
  54. Parker WD, Boyson SJ, Parks JK (1989) Electron transport chain abnormalities in idiopathic Parkinson’s disease. Ann Neurol 26:719–723PubMedCrossRefGoogle Scholar
  55. Pastor P, Pastor E, Carnero C et al (2001) Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 49:263–267PubMedCrossRefGoogle Scholar
  56. Poorkaj P, Muma NA, Zhukareva V et al (2002) An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol 52:511–516PubMedCrossRefGoogle Scholar
  57. Rango M, Arighi A, Biondetti P et al (2007) Magnetic resonance spectroscopy in Parkinson’s disease and Parkinsonian syndromes. Funct Neurol 22:75–79PubMedGoogle Scholar
  58. Ros R, Thobois S, Streichenberger N et al (2005) A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol 62:1444–1450PubMedCrossRefGoogle Scholar
  59. Rossi G, Gasparoli E, Pasquali C et al (2004) Progressive supranuclear palsy and Parkinson’s disease in a family with a new mutation in the tau gene. Ann Neurol 55:448–449PubMedCrossRefGoogle Scholar
  60. Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49PubMedCrossRefGoogle Scholar
  61. Salat DH, Tuch DS, van der Kouwe AJ et al (2010) White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging 31:244–256PubMedCrossRefGoogle Scholar
  62. Santens P, De Reuck J, Crevits L et al (1997) Cerebral oxygen metabolism in patients with progressive supranuclear palsy: a positron emission tomography study. Eur Neurol 37:18–22PubMedCrossRefGoogle Scholar
  63. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1289Google Scholar
  64. Shults CW, Oakes D, Kieburtz K et al (2002) Effects of coenzyme Q10 in early Parkinson disease. Evidence of slowing of the functional decline. Arch Neurol 59:1541–1550PubMedCrossRefGoogle Scholar
  65. Sian J, Dexter DT, Lees AJ et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355PubMedCrossRefGoogle Scholar
  66. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436PubMedCrossRefGoogle Scholar
  67. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20:1714–1722PubMedCrossRefGoogle Scholar
  68. Stamelou M, Reuss A, Pilatus U et al (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 23:942–949PubMedCrossRefGoogle Scholar
  69. Stamelou M, Pilatus U, Reuss A et al (2009) In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 29:861–870PubMedCrossRefGoogle Scholar
  70. Stanford PM, Halliday GM, Brooks WS et al (2000) Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene. Expansion of the disease phenotype caused by tau gene mutations. Brain 123:880–893PubMedCrossRefGoogle Scholar
  71. Sullivan PG, Geiger JD, Mattson MP, Scheff SW (2000) Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48:723–729PubMedCrossRefGoogle Scholar
  72. Swerdlow RH, Parks JK, Miller SW et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671PubMedCrossRefGoogle Scholar
  73. Swerdlow RH, Parks JK, Davis JN et al (1998) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 44:873–881PubMedCrossRefGoogle Scholar
  74. Swerdlow RH, Golbe LI, Parks JK et al (2000) Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J Neurochem 75:1681–1684PubMedCrossRefGoogle Scholar
  75. van Balken I, Litvan I (2006) Current and future treatments in progressive supranuclear palsy. Curr Treat Options Neurol 8:211–223PubMedCrossRefGoogle Scholar
  76. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH (2007) Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1–9PubMedCrossRefGoogle Scholar
  77. Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279PubMedCrossRefGoogle Scholar
  78. Zemlyak I, Sapolsky R, Gozes I (2009a) NAP protects against cytochrome c release: inhibition of the initiation of apoptosis. Eur J Pharmacol 618:9–14PubMedCrossRefGoogle Scholar
  79. Zemlyak I, Sapolsky R, Gozes I (2009b) NAP protects against cyanide-related microtubule destruction. J Neural Transm 116:1411–1416PubMedCrossRefGoogle Scholar
  80. Zhang B, Maiti A, Shively S et al (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vincent Ries
    • 1
  • Wolfgang H. Oertel
    • 1
  • Günter U. Höglinger
    • 1
  1. 1.Department of NeurologyPhilipps UniversityMarburgGermany

Personalised recommendations