Journal of Molecular Neuroscience

, Volume 46, Issue 2, pp 343–351 | Cite as

IL-1β Down-Regulates ADAMTS-13 mRNA Expression in Cells of the Central Nervous System

  • G. Alkistis Frentzou
  • Claire Bradford
  • Kirsty A. Harkness
  • Gail Haddock
  • M. Nicola Woodroofe
  • Alison K. Cross
Article

Abstract

ADAMTS-13 is the Von Willebrand factor (vWF) cleaving protease, responsible for the cleavage and down-regulation of the pro-thrombotic properties of ultra large VWF multimers. It is expressed predominantly by the hepatic stellate cells of the liver, but is also found to be expressed in other tissues, including brain. Reduced ADAMTS-13 is associated with a variety of thrombotic microangiopathies. Since the cellular origin and regulation of ADAMTS-13 expression in the brain is unknown, we aimed to investigate this in four different central nervous system (CNS)-derived cell lines, SHSY–5Y (human neuroblastoma), U373 (human astroglioma), CHME-3 (human foetal microglia) and hCMEC/D3 (adult human brain endothelial cells). All cell lines expressed ADAMTS-13 mRNA constitutively with neuroblastoma cells showing the highest expression. Interleukin (IL)-1β down-regulated ADAMTS-13 mRNA expression in astroglioma cells and microglial cells whereas TNF and IL-6 treatment showed no significant differences in ADAMTS-13 mRNA expression in any cell line tested. ADAMTS-13 protein expression was reduced in a dose-dependent manner only in astroglioma cells following stimulation by IL-1β. The ability of IL-1β to significantly reduce ADAMTS-13 mRNA expression in human microglia and astroglioma cells suggests a role in the haemostasis of the local microenvironment under inflammatory conditions. This is the first report of ADAMTS-13 expression in cells of the CNS; however, its function remains to be determined.

Keywords

CNS IL-1β Astrocytes Cytokines vWF ADAMTS-13 

References

  1. Allan SM, Parker LC, Collins B, Davies R, Luheshi GN, Rothwell NJ (2001) Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proc Natl Acad Sci USA 97:5580–5585CrossRefGoogle Scholar
  2. Benveniste EN, Benos DJ (1995) TNF-alpha-and IFN-gamma-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J 9(15):1577–1584PubMedGoogle Scholar
  3. Bernardo A, Chalmette B, Nolasco L, Moake JF, Dong J-F (2004) Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 104(1):100–106PubMedCrossRefGoogle Scholar
  4. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischaemic brain damage. J Neurosci 21(15):5528–5534PubMedGoogle Scholar
  5. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, López-Otín C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283(1–2):49–62PubMedCrossRefGoogle Scholar
  6. Cao WJ, Niiya M, Zheng XW, Shang DZ, Zheng XL (2008) Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial cells. J Thromb Haemost 6(7):1233–1235PubMedCrossRefGoogle Scholar
  7. Castellanos M, Castillo J, García MM et al (2002) Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke 33(4):982–987PubMedCrossRefGoogle Scholar
  8. Claus RA, Bockmeyer CL, Kentouche K et al (2005) Transcriptional regulation of ADAMTS13. Thromb Haemost 94(1):41–45PubMedGoogle Scholar
  9. Cross AK, Haddock G, Stock CJ et al (2006) ADAMTS-1 and −4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. Brain Res 1088:19–30PubMedCrossRefGoogle Scholar
  10. Deitmer JW (2001) Strategies for metabolic exchange between glial cells and neurons. Resp Physiol 129(1–2):71–81CrossRefGoogle Scholar
  11. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508PubMedCrossRefGoogle Scholar
  12. Fasler-Kan E, Suenderhauf C, Barteneva N, Poller B, Gygax D, Huwyler J (2010) Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3. Brain Res 1354:15–22PubMedCrossRefGoogle Scholar
  13. Flynn G, Maru S, Loughlin J, Romero IA, Male D (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136(1–2):84–93PubMedCrossRefGoogle Scholar
  14. Fogal B, Hewett SJ (2008) Interleukin-1β: a bridge between inflammation and excitotoxicity? J Neurochem 106:1–23PubMedCrossRefGoogle Scholar
  15. Fontaine V, Mohand-Said S, Haboteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischaemia: Opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22(RC216):1–7Google Scholar
  16. Fujikawa K, Suzuki H, McMullen B, Chung D (2001) Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98(6):1662–1666PubMedCrossRefGoogle Scholar
  17. Furlan M (1996) Von Willebrand factor: molecular size and functional activity. Ann Hematol 72(6):341–348PubMedCrossRefGoogle Scholar
  18. Hillhouse EW, Kida S, Iannotti F (1998) Middle cerebral artery occlusion in the rat causes a biphasic production of immunoreactive interleukin-1beta in the cerebral cortex. Neurosci Lett 249(2–3):177–179PubMedCrossRefGoogle Scholar
  19. Hjorth E, Frenkel D, Weiner H, Schultzberg M (2010) Effects of immunomodulatory substances on phagocytosis of abeta (1–42) by human microglia Int. J Alzheimers Dis. doi:10.4061/2010/798424
  20. Hosomi N, Ban CR, Naya T et al (2005) Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischaemia. J Cereb Blood Flow Metab 25(8):959–967PubMedCrossRefGoogle Scholar
  21. Hurst LA, Bunning RAD, Couraud PO et al (2009) Expression of ADAM-17, TIMP-3 and fractalkine in the human adult brain endothelial cell line, hCMEC/D3, following pro-inflammatory cytokine treatment. J Neuroimmunol 210:108–112PubMedCrossRefGoogle Scholar
  22. Lammle B, Kremer Hovinga JA, Alberio L (2005) Thrombotic thrombocytopenic purpura. Thromb Haemost 3:1663–1675CrossRefGoogle Scholar
  23. Larkin D, de Laat B, Jenkins PV et al (2009) Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathogens 5(3):e1000349. doi:10.1371/journal.ppat.1000349 PubMedCrossRefGoogle Scholar
  24. Lawrence CB, Allan SM, Rotwhwell NJ (1998) Interleukin-1beta and the interleukin-1 receptor antagonist act in the striatum to modify excitotoxic brain damage in the rat. Eur J Neurosci 10(3):118–195CrossRefGoogle Scholar
  25. Liu T, Mc Donnell PC, Young PR et al (1993) Interleukin-1 beta mRNA expression in ischaemic rat cortex. Stroke 24(11):1746–1751PubMedCrossRefGoogle Scholar
  26. Loirat C, Girma J-P, Desconclois C, Coppo P, Veyradier A (2009) Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr Nephrol 24:19–29PubMedCrossRefGoogle Scholar
  27. Mannucci PM, Parolari A, Canciani MT, Alemanni F, Camera M (2005) Opposite changes of ADAMTS-13 and von Willebrand factor after cardiac surgery. J Thromb Haemost 3(2):397–399PubMedCrossRefGoogle Scholar
  28. Martin K, Borgel D, Lerolle N et al (2007) ADAMTS-13 is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med 35:2375–2382PubMedCrossRefGoogle Scholar
  29. Mimuro J, Niimura M, Kashiwakura Y et al (2008) Unbalanced expression of ADAMTS13 and von Willebrand factor in mouse endotoxinemia. Thromb Res 122(1):91–97PubMedCrossRefGoogle Scholar
  30. Moake JL (2002) Thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome. Arch Pathol Lab Med 126(11):1430–1433PubMedGoogle Scholar
  31. Moore JC, Hayward CP, Warkentin TE, Kelton JG (2001) Decreased von Willebrand factor protease activity associated with thrombocytopenic disorders. Blood 98(6):1842–1846PubMedCrossRefGoogle Scholar
  32. Niiya M, Uemura M, Zheng XW et al (2006) Increased ADAMTS-13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo. J Thromb Haemost 4(5):1063–1070PubMedCrossRefGoogle Scholar
  33. Ono T, Mimuro J, Madoiwa S et al (2006) Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS-13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood 107:528–534PubMedCrossRefGoogle Scholar
  34. Parry-Jones AR, Liimatainen T, Kauppinen RA, Grohn OHJ, Rothwell NJ (2008) Interleukin-1 exacerbates focal cerebral ischaemia and reduces ischaemic brain temperature in the rat. Magn Reson Med 59(6):1239–1249PubMedCrossRefGoogle Scholar
  35. Planas AM, Gorina R, Chamorro A (2006) Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 34(6):1267–1270PubMedCrossRefGoogle Scholar
  36. Pregi N, Wenker S, Vittori D, Leirós CP, Nesse A (2009) TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells. Exp Cell Res 315(3):419–431PubMedCrossRefGoogle Scholar
  37. Schwamborn J, Lindecke A, Elvers M et al (2003) Microarray analysis of tumor necrosis factor alpha induced gene expression in U373 human glioblastoma cells. BMC Genomics 4(1):46–58PubMedCrossRefGoogle Scholar
  38. Shang D, Zheng XW, Niiya M, Zheng XL (2006) Apical sorting of ADAMTS13 in vascular endothelial cells and Madin-Darby canine kidney cells depends on the CUB domains and their association with lipid rafts. Blood 108(7):2207–2215PubMedCrossRefGoogle Scholar
  39. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytok Grow Fact Rev 10:119–130CrossRefGoogle Scholar
  40. Smith CJ, Emsley HC, Gavin CM et al (2004) Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 4:2PubMedCrossRefGoogle Scholar
  41. Sotgiu S, Zanda B, Marchetti B et al (2006) Inflammatory biomarkers in blood of patients with acute brain ischaemia. Eur J Neurol 13(5):505–513PubMedCrossRefGoogle Scholar
  42. Stroemer RP, Rothwell NJ (1998) Exacerbation of ischaemic brain damage by localized striatal injection of interleukin-1beta in the rat. J Cereb Blood Flow Metab 18(8):833–839PubMedCrossRefGoogle Scholar
  43. Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA Jr, Goeddel DV (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 88:9292–9296PubMedCrossRefGoogle Scholar
  44. Tsai HM (1996) Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87(10):4235–4244PubMedGoogle Scholar
  45. Turner NA, Nolasco L, Ruggeri ZM, Moake JL (2009) Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114(24):5102–5111PubMedCrossRefGoogle Scholar
  46. Utal AK, Stopka AL, Coleman PD (1998) Interleukin-1β stimulates Mitogen-Activated Protein Kinase in U373 astrocytoma cells without the production of lipid second messengers. Neurochem Res 23(2):235–242PubMedCrossRefGoogle Scholar
  47. Vila N, Castillo J, Davalos A, Chamorro A (2000) Proinflammatory cytokines and early neurological worsening in ischaemic stroke. Stroke 31(10):2325–2329PubMedCrossRefGoogle Scholar
  48. Vila N, Chamorro A, Castillo J, Davalos A (2001) Glutamate, interleukin-6, and early clinical worsening in patients with acute stroke. Stroke 32(5):1234–1237PubMedCrossRefGoogle Scholar
  49. Waje-Andreassen U, Krakenes J, Ulvestad E et al (2005) IL-6: an early marker for outcome in acute ischaemic stroke. Acta Neurol Scand 111(6):360–365PubMedCrossRefGoogle Scholar
  50. Wang X, Yue TL, Barone FC, White RF, Gagnon RC, Feuerstein GZ (1994) Concomitant cortical expression of TNF-alpha and IL-1 beta mRNAs follows early response gene expression in transient focal ischaemia. Mol Chem Neuropathol 23(2–3):103–114PubMedCrossRefGoogle Scholar
  51. Wilde GJ, Pringle AK, Sundstrom LE, Mann DA, Iannotti F (2000) Attenuation and augmentation of ischaemia-related neuronal death by tumour necrosis factor-alpha in vitro. Eur J Neurosci 12(11):3863–3870PubMedCrossRefGoogle Scholar
  52. Zhang Z, Chopp M, Goussev A, Powers C (1998) Cerebral vessels express interleukin 1beta after focal cerebral ischaemia. Brain Res 784(1–2):210–217PubMedCrossRefGoogle Scholar
  53. Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276(44):41059–41063PubMedCrossRefGoogle Scholar
  54. Zhou W, Inada M, Lee TP et al (2005) ADAMTS13 is expressed in hepatic stellate cells. Lab Invest 85(6):780–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Alkistis Frentzou
    • 1
    • 3
  • Claire Bradford
    • 1
  • Kirsty A. Harkness
    • 2
  • Gail Haddock
    • 1
  • M. Nicola Woodroofe
    • 1
  • Alison K. Cross
    • 1
  1. 1.Biomedical Research Centre, Faculty of Health and WellbeingSheffield Hallam UniversitySheffieldUK
  2. 2.Department of NeurologyRoyal Hallamshire HospitalSheffieldUK
  3. 3.Cardiovascular and Neuronal Remodelling, LIGHTUniversity of LeedsLeedsUK

Personalised recommendations