Journal of Molecular Neuroscience

, Volume 45, Issue 3, pp 690–695 | Cite as

Immunotherapy for Tauopathies

Article

Abstract

Pathological tau protein is found in Alzheimer's disease and related tauopathies. The protein is hyperphosphorylated and/or mutated which leads to aggregation and neurotoxicity. Because cognitive functions correlate well with the degree of tau pathology, clearing these aggregates is a promising therapeutic approach. Studies pioneered by our laboratory and confirmed by others have shown that both active and passive immunizations targeting disease-related tau epitopes successfully reduce tau aggregates in vivo and slow or prevent behavioral impairments in mouse models of tauopathy. Here, we summarize recent advances in this new field.

Keywords

Tau Tangles Immunization Immunotherapy Alzheimer's disease Tauopathies Mice 

Notes

Acknowledgments

This study is supported by NIH grants AG032611, AG020197, the Alzheimer's Association, the Alzheimer's Drug Discovery Foundation/Association for Frontotemporal Dementia, and the Irma T Hirschl/Monique Caulier Trust.

Disclosure

Patent is pending on tau immunotherapy.

References

  1. Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590PubMedCrossRefGoogle Scholar
  2. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42:631–639PubMedGoogle Scholar
  3. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129PubMedCrossRefGoogle Scholar
  4. Bard F et al (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919PubMedCrossRefGoogle Scholar
  5. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer's disease. Acta Neuropathol 118:103–113PubMedCrossRefGoogle Scholar
  6. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224:472–485PubMedCrossRefGoogle Scholar
  7. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2010a) Passive tau immunotherapy diminishes functional decline and clears tau aggregates in a mouse model of tauopathy. Alzheimers Dement 6:S578CrossRefGoogle Scholar
  8. Boutajangout A, Quartermain D, Sigurdsson EM (2010b) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30:16559–16566PubMedCrossRefGoogle Scholar
  9. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. doi:10.1111/j.1471-4159.2011.07337.x
  10. Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood–brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120:245–263PubMedCrossRefGoogle Scholar
  11. Castillo DL, Lasagna-Reeves C, Guerrero-Munoz MJ, Estes DM, Barrett A, Dineley K, Jackson GR, Kayed R (2010) Modulation of tau oligomers by passive vaccination. Soc Neurosci Abstr 347.11Google Scholar
  12. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCrossRefGoogle Scholar
  13. Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE (2003) Amyloid-beta immunization effectively reduces amyloid deposition in FcRγ−/− knock-out mice. J Neurosci 23:8532–8538PubMedGoogle Scholar
  14. Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP (2002) Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology 59:398–407PubMedGoogle Scholar
  15. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 98:8850–8855PubMedCrossRefGoogle Scholar
  16. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer β-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88:8362–8366PubMedCrossRefGoogle Scholar
  17. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852PubMedCrossRefGoogle Scholar
  18. Furlan R, Brambilla E, Sanvito F, Roccatagliata L, Olivieri S, Bergami A, Pluchino S, Uccelli A, Comi G, Martino G (2003) Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126:285–291PubMedCrossRefGoogle Scholar
  19. Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250PubMedGoogle Scholar
  20. Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ 42 fibrils. Science 293:1491–1495PubMedCrossRefGoogle Scholar
  21. Higuchi M (2011) Molecular mediators of amyloidosis-inflammation coupling in Alzheimer's disease: in vivo evidence in humans and animal models. Neurodegener Dis, 8(Suppl 1)Google Scholar
  22. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JAR (2008) Long-term effects of Aβ(42) immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRefGoogle Scholar
  23. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, George-Hyslop P, Westaway D (2000) Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408:979–982PubMedCrossRefGoogle Scholar
  24. Kerchner GA, Boxer AL (2010) Bapineuzumab. Expert Opin Biol Ther 10:1121–1130PubMedCrossRefGoogle Scholar
  25. Krishnamurthy PK, Deng Y, Mathews PM, Sigurdsson EM (2010) Mechanistic studies of antibody mediated clearance of tau aggregates using an ex vivo brain slice model. Alzheimers Dement 6:S276CrossRefGoogle Scholar
  26. Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol 6:108–119PubMedCrossRefGoogle Scholar
  27. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul MM, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405PubMedCrossRefGoogle Scholar
  28. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491PubMedCrossRefGoogle Scholar
  29. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 107:19985–19990PubMedCrossRefGoogle Scholar
  30. Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005) Effects of α-synuclein immunization in a mouse model of Parkinson's disease. Neuron 46:857–868PubMedCrossRefGoogle Scholar
  31. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408:982–985PubMedCrossRefGoogle Scholar
  32. Morgan D, Lee D, Brownlow M, Selenica M-L, Reid P, Alvarez J, Gordon MN (2011) Opposing roles of microglial activation in amyloid depositing and tau depositing transgenic mice. Neurodegener Dis, 8(Suppl 1)Google Scholar
  33. Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V, Meerschman C, van der Auwera I, van Leuven F, Sugawara M, Weingertner MC, Bechinger B, Greferath R, Kolonko N, Nagel-Steger L, Riesner D, Brady RO, Pfeifer A, Nicolau C (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A 104:9810–9815PubMedCrossRefGoogle Scholar
  34. Nerenberg ST, Prasad R (1975) Radioimmunoassays for Ig classes G, A, M, D, and E in spinal fluids: normal values of different age groups. J Lab Clin Med 86:887–898PubMedGoogle Scholar
  35. Novak M (2009) Tau vaccine: active immunization with misfolded tau protein attenuates tau pathology in the transgenic rat model of tauopathy. Alzheimers Dement 5:P93CrossRefGoogle Scholar
  36. Novak M (2010) Tau transgenic rat model and response to tau vaccine. Alzheimers Dement 6:S118CrossRefGoogle Scholar
  37. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61:46–54PubMedGoogle Scholar
  38. Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39:669–673PubMedCrossRefGoogle Scholar
  39. Pearson RCA, Powell TPS (1989) The neuroanatomy of Alzheimer's disease. Rev Neurosci 2:101–122PubMedCrossRefGoogle Scholar
  40. Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29:10741–10749PubMedCrossRefGoogle Scholar
  41. Ribe EM, Perez M, Puig B, Gich I, Lim F, Cuadrado M, Sesma T, Catena S, Sanchez B, Nieto M, Gomez-Ramos P, Moran MA, Cabodevilla F, Samaranch L, Ortiz L, Perez A, Ferrer I, Avila J, Gomez-Isla T (2005) Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis 20:814–822PubMedCrossRefGoogle Scholar
  42. Roberson ED, Scearce-Levie K, Palop JJ, Yan FR, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316:750–754PubMedCrossRefGoogle Scholar
  43. Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63:1459–1467PubMedCrossRefGoogle Scholar
  44. Schenk D et al (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedCrossRefGoogle Scholar
  45. Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616PubMedCrossRefGoogle Scholar
  46. Siemers ER, Friedrich S, Dean RA, Gonzales CR, Farlow MR, Paul SM, DeMattos RB (2010) Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 33:67–73PubMedCrossRefGoogle Scholar
  47. Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer's disease and related tauopathies. Curr Alzheimer Res 6:446–450PubMedCrossRefGoogle Scholar
  48. Sigurdsson EM, Lorens SA, Hejna MJ, Dong XW, Lee JM (1996) Local and distant histopathological effects of unilateral amyloid-beta 25–35 injections into the amygdala of young F344 rats. Neurobiol Aging 17:893–901PubMedCrossRefGoogle Scholar
  49. Sigurdsson EM, Lee JM, Dong XW, Hejna MJ, Lorens SA (1997) Bilateral injections of amyloid-β 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol Aging 18:591–608PubMedCrossRefGoogle Scholar
  50. Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a non-toxic/non-fibrillar amyloid-β homologous peptide reduces Alzheimer's disease associated pathology in transgenic mice. Am J Pathol 159:439–447PubMedCrossRefGoogle Scholar
  51. Sigurdsson EM, Knudsen E, Asuni A, Fitzer-Attas C, Sage D, Quartermain D, Goni F, Frangione B, Wisniewski T (2004) An attenuated immune response is sufficient to enhance cognition in an Alzheimer's disease mouse model immunized with amyloid-β derivatives. J Neurosci 24:6277–6282PubMedCrossRefGoogle Scholar
  52. Tampellini D, Magrane J, Takahashi RH, Li F, Lin MT, Almeida CG, Gouras GK (2007) Internalized antibodies to the Aβ domain of APP reduce neuronal Aβ and protect against synaptic alterations. J Biol Chem 282:18895–18906PubMedCrossRefGoogle Scholar
  53. Theunis C, Crespo Biel N, Borghgraef P, Devijver H, Gafner V, Philgren M, Hickman DT, Chuard N, Lopez Deber MP, Reis P, Buccarello AL, Adolfsson O, Pfeifer A, Muhs A, Van Leuven F (2011) Protein tau, target for immunotherapy: pre-clinical evaluation in transgenic mice. Neurodegener Dis, 8(Suppl 1)Google Scholar
  54. Troquier L, Burnouf S, Belarbi K, Caillierez R, Blum D, Buee L (2011) Modulation of tau pathology in THY-Tau22 transgenic mice: from physical exercise to immunotherapy. Neurodegener Dis, 8(Suppl 1)Google Scholar
  55. Wang A, Das P, Switzer RC III, Golde TE, Jankowsky JL (2011) Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-β immunotherapy. J Neurosci 31:4124–4136PubMedCrossRefGoogle Scholar
  56. Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia: a quantitative study. J Neurol Sci 56:343–356PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physiology and NeuroscienceNew York University, School of MedicineNew YorkUSA
  2. 2.Department of PsychiatryNew York University, School of MedicineNew YorkUSA

Personalised recommendations