Journal of Molecular Neuroscience

, Volume 46, Issue 2, pp 303–314

The Small Chaperone Protein p23 and Its Cleaved Product p19 in Cellular Stress

  • Karen S. Poksay
  • Surita Banwait
  • Danielle Crippen
  • Xiao Mao
  • Dale E. Bredesen
  • Rammohan V. Rao


The presence of misfolded proteins elicits cellular responses including an endoplasmic reticulum (ER) stress response that may protect cells against the toxic buildup of misfolded proteins. Accumulation of these proteins in excessive amounts, however, overwhelms the “cellular quality control” system and impairs the protective mechanisms designed to promote correct folding and degrade misfolded proteins, ultimately leading to organelle dysfunction and cell death. Studies from multiple laboratories have identified the roles of several ER stress-induced cell death modulators and effectors. Earlier, we reported the role of the small co-chaperone protein p23 in preventing ER stress-induced cell death. p23 undergoes caspase-dependent cleavage to yield a 19-kD product (p19), and mutation of this caspase cleavage site not only blocks the formation of the 19-kD product but also attenuates the ER stress-induced cell death process triggered by various stressors. Thus, a critical question is whether p23 and/or p19 could serve as an in vivo marker for neurodegenerative diseases featuring misfolded proteins and cellular stress. In the present study, we used an antibody that recognizes both p23 and p19 as well as a specific neo-epitope antibody that detects only the p19 fragment. These antibodies were used to detect the presence of both these proteins in cells, primary neurons, brain samples from a mouse model of Alzheimer’s disease (AD), and fixed human AD brain samples. While patients with severe AD did display a consistent reduction in p23 levels, our inability to observe p19 in mouse or human AD brain samples suggests that the usefulness of the p23 neo-epitope antibody is restricted to cells and primary neurons undergoing cellular stress.


Endoplasmic reticulum p23 HSP90 Alzheimer’s disease ER stress Caspase Programmed cell death 



Endoplasmic reticulum


Programmed cell death


Alzheimer’s disease


Glucose-regulated protein


Mouse embryonic fibroblasts


  1. Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV (2008) Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis 13:904–914PubMedCrossRefGoogle Scholar
  2. Bando Y, Katayama T, Kasai K, Taniguchi M, Tamatani M, Tohyama M (2003) GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 18:829–840PubMedCrossRefGoogle Scholar
  3. Banwait S, Galvan V, Zhang J, Gorostiza OF, Ataie M, Huang W et al (2008) C-terminal cleavage of the amyloid-beta protein precursor at Asp664: a switch associated with Alzheimer’s disease. J Alzheimers Dis 13:1–16PubMedGoogle Scholar
  4. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618PubMedCrossRefGoogle Scholar
  5. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802PubMedCrossRefGoogle Scholar
  6. Bredesen DE, John V, Galvan V (2010) Importance of the caspase cleavage site in amyloid-beta protein precursor. J Alzheimers Dis 22:57–63PubMedGoogle Scholar
  7. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A et al (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968PubMedCrossRefGoogle Scholar
  8. Chinta SJ, Rane A, Poksay KS, Bredesen DE, Andersen JK, Rao RV (2008) Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat. Neuromolecular Med 10:333–342PubMedCrossRefGoogle Scholar
  9. Chinta SJ, Poksay KS, Kaundinya G, Hart M, Bredesen DE, Andersen JK et al (2009) Endoplasmic reticulum stress-induced cell death in dopaminergic cells: effect of resveratrol. J Mol Neurosci 39(1–2):157–168PubMedCrossRefGoogle Scholar
  10. Dewachter I, van Dorpe J, Spittaels K, Tesseur I, Van Den Haute C, Moechars D et al (2000) Modeling Alzheimer’s disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp Gerontol 35:831–841PubMedCrossRefGoogle Scholar
  11. Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C et al (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 1333:72–81PubMedCrossRefGoogle Scholar
  12. Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F (2006) Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281:2693–2700PubMedCrossRefGoogle Scholar
  13. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038PubMedCrossRefGoogle Scholar
  14. Felts SJ, Toft DO (2003) p23, a simple protein with complex activities. Cell Stress Chaperon 8:108–113CrossRefGoogle Scholar
  15. Forman MS, Lee VM, Trojanowski JQ (2003) ‘Unfolding’ pathways in neurodegenerative disease. Trends Neurosci 26:407–410PubMedCrossRefGoogle Scholar
  16. Fosang AJ, Last K, Stanton H, Golub SB, Little CB, Brown L et al (2010) Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan. Methods Mol Biol 622:312–347PubMedCrossRefGoogle Scholar
  17. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci U S A 103:7130–7135PubMedCrossRefGoogle Scholar
  18. Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L et al (2004) Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9:664–683PubMedGoogle Scholar
  19. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599PubMedCrossRefGoogle Scholar
  20. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–36PubMedCrossRefGoogle Scholar
  21. Hori O, Ichinoda F, Yamaguchi A, Tamatani T, Taniguchi M, Koyama Y et al (2004) Role of Herp in the endoplasmic reticulum stress response. Genes Cells 9:457–469PubMedCrossRefGoogle Scholar
  22. Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9:670–678PubMedCrossRefGoogle Scholar
  23. Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol 14:1956–1963PubMedGoogle Scholar
  24. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398PubMedGoogle Scholar
  25. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530PubMedCrossRefGoogle Scholar
  26. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501PubMedCrossRefGoogle Scholar
  27. McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22:281–289PubMedCrossRefGoogle Scholar
  28. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294PubMedCrossRefGoogle Scholar
  29. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMedGoogle Scholar
  30. Nguyen TV, Galvan V, Huang W, Banwait S, Tang H, Zhang J et al (2008) Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J Neurochem 104:1065–1080PubMedCrossRefGoogle Scholar
  31. Owen JB, Di Domenico F, Sultana R, Perluigi M, Cini C, Pierce WM et al (2009) Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: implications for progression of AD. J Proteome Res 8:471–482PubMedCrossRefGoogle Scholar
  32. Oxelmark E, Knoblauch R, Arnal S, Su LF, Schapira M, Garabedian MJ (2003) Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling. J Biol Chem 278:36547–36555PubMedCrossRefGoogle Scholar
  33. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662PubMedCrossRefGoogle Scholar
  34. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM et al (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874PubMedCrossRefGoogle Scholar
  35. Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, Del Rio G et al (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277:21836–21842PubMedCrossRefGoogle Scholar
  36. Rao RV, Ellerby HM, Bredesen DE (2004a) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380PubMedCrossRefGoogle Scholar
  37. Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, Del Rio G et al (2004b) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 279:177–187PubMedCrossRefGoogle Scholar
  38. Rao RV, Niazi K, Mollahan P, Mao X, Crippen D, Poksay KS et al (2006) Coupling endoplasmic reticulum stress to the cell-death program: a novel HSP90-independent role for the small chaperone protein p23. Cell Death Differ 13:415–425PubMedCrossRefGoogle Scholar
  39. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904PubMedCrossRefGoogle Scholar
  40. Selznick LA, Holtzman DM, Han BH, Gokden M, Srinivasan AN, Johnson EM Jr et al (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J Neuropathol Exp Neurol 58:1020–1026PubMedCrossRefGoogle Scholar
  41. Semple JI, Smits VA, Fernaud JR, Mamely I, Freire R (2007) Cleavage and degradation of Claspin during apoptosis by caspases and the proteasome. Cell Death Differ 14:1433–1442PubMedCrossRefGoogle Scholar
  42. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894PubMedCrossRefGoogle Scholar
  43. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI et al (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11:403–415PubMedCrossRefGoogle Scholar
  44. Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO (2000) Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 275:23045–23052PubMedCrossRefGoogle Scholar
  45. Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J (2000) C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303:583–592PubMedCrossRefGoogle Scholar
  46. Werner ME, Chen F, Moyano JV, Yehiely F, Jones JC, Cryns VL (2007) Caspase proteolysis of the integrin beta4 subunit disrupts hemidesmosome assembly, promotes apoptosis, and inhibits cell migration. J Biol Chem 282:5560–5569PubMedCrossRefGoogle Scholar
  47. Xiao G, Chung TF, Pyun HY, Fine RE, Johnson RJ (1999) KDEL proteins are found on the surface of NG108-15 cells. Brain Res Mol Brain Res 72:121–128PubMedCrossRefGoogle Scholar
  48. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664PubMedCrossRefGoogle Scholar
  49. Zhang D, Armstrong JS (2006) Bax and the mitochondrial permeability transition cooperate in the release of cytochrome c during endoplasmic reticulum-stress-induced apoptosis. Cell Death Differ 14:703–715PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karen S. Poksay
    • 1
  • Surita Banwait
    • 1
  • Danielle Crippen
    • 1
  • Xiao Mao
    • 1
  • Dale E. Bredesen
    • 1
    • 2
  • Rammohan V. Rao
    • 1
  1. 1.The Buck Institute for Research on AgingNovatoUSA
  2. 2.University of CaliforniaSan FranciscoUSA

Personalised recommendations