Journal of Molecular Neuroscience

, Volume 45, Issue 3, pp 589–593 | Cite as

Eating Disturbance in Behavioural-Variant Frontotemporal Dementia

  • Olivier Piguet


Behavioural-variant frontotemporal dementia (bvFTD) is a progressive neurodegenerative brain disorder, clinically characterised by changes in cognition, personality and behaviour. Marked disturbances in eating behaviour, such as overeating and preference for sweet foods, are also commonly reported. This paper reviews the current literature on eating abnormalities in bvFTD, their clinical characteristics and biological correlates, and the contribution of hypothalamus to eating regulation. Existing literature shows that disturbance in an orbitofrontal–insular–striatal brain network underlies the emergence of eating disturbance in bvFTD. In addition, recent evidence indicates that degeneration and consequent dysregulation within the hypothalamus relates to significant feeding disturbance in this disease. These findings could provide a basis for the development of therapeutic models in bvFTD.


Hypothalamus Neuroimaging Postmortem 



Olivier Piguet is supported by a National Health and Medical Research Council Clinical Career Development Award fellowship (no. 510184).


  1. Bozeat S, Gregory CA, Ralph MA, Hodges JR (2000) Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? J Neurol Neurosurg Psychiatry 69:178–186PubMedCrossRefGoogle Scholar
  2. Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica (Berlin) 114:5–22CrossRefGoogle Scholar
  3. Combarros O, van Duijn CM, Hammond N et al (2009) Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer’s disease. J Neuroinflammation 6:22PubMedCrossRefGoogle Scholar
  4. Cong ND, Saikawa T, Ogawa R, Hara M, Takahashi N, Sakata T (2004) Reduced 24 hour ambulatory blood pressure and abnormal heart rate variability in patients with dysorexia nervosa. Heart 90:563–564PubMedCrossRefGoogle Scholar
  5. Couce ME, Cottam D, Esplen J, Teijeiro R, Schauer P, Burguera B (2006) Potential role of hypothalamic ghrelin in the pathogenesis of human obesity. J Endocrinol Invest 29:599–605PubMedGoogle Scholar
  6. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314PubMedGoogle Scholar
  7. Dockray G (2004) Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol 4:557–560PubMedCrossRefGoogle Scholar
  8. Engstrom G, Janzon L, Berglund G et al (2002a) Blood pressure increase and incidence of hypertension in relation to inflammation-sensitive plasma proteins. Arterioscler Thromb Vasc Biol 22:2054–2058PubMedCrossRefGoogle Scholar
  9. Engstrom G, Lind P, Hedblad B, Stavenow L, Janzon L, Lindgarde F (2002b) Effects of cholesterol and inflammation-sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 105:2632–2637PubMedCrossRefGoogle Scholar
  10. Farooqi IS, Matarese G, Lord GM et al (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103PubMedGoogle Scholar
  11. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168PubMedCrossRefGoogle Scholar
  12. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedCrossRefGoogle Scholar
  13. Greco SJ, Sarkar S, Johnston JM et al (2008) Leptin reduces Alzheimer’s disease-related tau phosphorylation in neuronal cells. Biochem Biophys Res Commun 376:536–541PubMedCrossRefGoogle Scholar
  14. Ikeda M, Brown J, Holland AJ, Fukuhara R, Hodges JR (2002) Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer’s disease. J Neuro Neurosurg Psychiatry 73:371–376CrossRefGoogle Scholar
  15. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS (1994) Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Inter Med 152:93–100Google Scholar
  16. Kishi T, Elmquist JK (2005) Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 10:132–146PubMedCrossRefGoogle Scholar
  17. Lieb W, Beiser AS, Vasan RS et al (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302:2565–2572PubMedCrossRefGoogle Scholar
  18. Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  19. McCluskey LF, Elman LB, Martinez-Lage M et al (2009) Amyotrophic lateral sclerosis-plus syndrome with TAR DNA-binding protein-43 pathology. Arch Neurol 66:121–124PubMedCrossRefGoogle Scholar
  20. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809PubMedCrossRefGoogle Scholar
  21. Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198PubMedCrossRefGoogle Scholar
  22. Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedGoogle Scholar
  23. Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967PubMedCrossRefGoogle Scholar
  24. Pickering-Brown SM (2007) Progranulin and frontotemporal lobar degeneration. Acta Neuropathol 114:39–47PubMedCrossRefGoogle Scholar
  25. Piguet O, Grayson DA, Creasey H et al (2003) Vascular risk factors, cognition and dementia incidence over 6 years in the Sydney Older Persons Study. Neuroepidemiology 22:165–171PubMedCrossRefGoogle Scholar
  26. Piguet O, Hornberger M, Shelley BP, Kipps CM, Hodges JR (2009) Sensitivity of current criteria for the diagnosis of behavioral variant frontotemporal dementia. Neurology 72:732–737PubMedCrossRefGoogle Scholar
  27. Piguet O, Hornberger M, Mioshi E, Hodges JR (2011a) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172PubMedCrossRefGoogle Scholar
  28. Piguet O, Petersen A, Yin Ka Lam B et al (2011b) Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 69:312–319PubMedCrossRefGoogle Scholar
  29. Rascovsky K, Hodges JR, Kipps CM et al (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord 21:S14–S18PubMedCrossRefGoogle Scholar
  30. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedGoogle Scholar
  31. Rosen HJ, Allison SC, Schauer GF, Gorno-Tempini ML, Weiner MW, Miller BL (2005) Neuroanatomical correlates of behavioural disorders in dementia. Brain 128:2612–2625PubMedCrossRefGoogle Scholar
  32. Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211PubMedCrossRefGoogle Scholar
  33. Shinagawa S, Ikeda M, Nestor PJ et al (2009) Characteristics of abnormal eating behaviours in frontotemporal lobar degeneration: a cross-cultural survey. J Neurol Neurosurg Psychiatry 80:1413–1414PubMedCrossRefGoogle Scholar
  34. Wedderburn C, Wear H, Brown J et al (2008) The utility of the Cambridge Behavioural Inventory in neurodegenerative disease. J Neurol Neurosurg Psychiatry 79:500–503PubMedCrossRefGoogle Scholar
  35. Werner KH, Roberts NA, Rosen HJ et al (2007) Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology 69:148–155PubMedCrossRefGoogle Scholar
  36. Whitwell JL, Sampson EL, Loy CT et al (2007) VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration. Neuroimage 35:207–213PubMedCrossRefGoogle Scholar
  37. Woolley JD, Gorno-Tempini ML, Seeley WW et al (2007) Binge eating is associated with right orbitofrontal–insular–striatal atrophy in frontotemporal dementia. Neurology 69:1424–1433PubMedCrossRefGoogle Scholar
  38. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Neuroscience Research AustraliaSydneyAustralia
  2. 2.School of Medical SciencesThe University of New South WalesSydneyAustralia

Personalised recommendations