Journal of Molecular Neuroscience

, Volume 43, Issue 3, pp 470–477

The “Dying-Back” Phenomenon of Motor Neurons in ALS



Amyotrophic lateral sclerosis (ALS) is a lethal disease, characterized by progressive death of motor neurons with unknown etiology. Evidence from animal models indicates that neuronal dysfunction precedes the clinical phase of the disease. However, in parallel extensive nerve sprouting and synaptic remodeling as part of a compensatory reinnervation processes and possibly also of motor neurons pathology was demonstrated. Therefore, the weakness in muscle groups will not be clinically apparent until a large proportion of motor units are lost. This motor unit loss and associated muscle function which precedes the death of motor neurons may resemble the “die-back” phenomena. Studies indicated that in the early stages the nerve terminals and motor neuron junctions are partially degraded while the cell bodies in the spinal cord are mostly intact. Treatments to rescue motor neurons according to “dying-forward” model of motor neuron pathology in ALS have shown only limited success in SOD1G93A transgenic mice as well as in humans. If cell body degeneration is late compared with axonal degeneration, early intervention could potentially prevent loss of motor neurons. Therefore, it should be considered, according to the dying back hypothesis, to focus on motor neurons terminals in order to delay or prevent the progressive degradation.


Amyotrophic lateral sclerosis Motor neuron Dying back 


  1. Acsadi G, Anguelov R, Yang H et al (2002) Increased survival and function of SOD1 mice after Glial cell- derived neurotrophic factor gene therapy. Hum Gene Ther 13:1047–1059CrossRefPubMedGoogle Scholar
  2. Aguilar GJ, Laguna AE, Fergani A et al (2007) Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 101:1153–60CrossRefGoogle Scholar
  3. Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in mouse ALS model. Nature 429:413–417CrossRefPubMedGoogle Scholar
  4. Bendotti C, Calvaresi N, Chiveri L et al (2001) Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J Neurol Sci 191:25–33CrossRefPubMedGoogle Scholar
  5. Bruijn L, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749CrossRefPubMedGoogle Scholar
  6. Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25:532–537CrossRefPubMedGoogle Scholar
  7. Crone SA, Lee KF (2002) The bound leading the bound: target derived receptors act as guidance cues. Neuron 36:333–335CrossRefPubMedGoogle Scholar
  8. De Winter F, Vo T, Stam FJ et al (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32:102–117CrossRefPubMedGoogle Scholar
  9. Deshpande DM, Kim YS, Martinez T et al (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60:32–44CrossRefPubMedGoogle Scholar
  10. Dobrowolny G, Giacinti C, Pelosi L et al (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168:193–199CrossRefPubMedGoogle Scholar
  11. Durand J, Amendola J, Bories C, Lamotte d’Incamps B (2006) Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris 99:211–220CrossRefPubMedGoogle Scholar
  12. Feinberg DM, Preston DC, Shefner JM, Logigian EL (1999) Amplitude dependent slowing of conduction in amyotrophic lateral sclerosis and polyneuropathy. Muscle Nerve 22:1646–1651CrossRefGoogle Scholar
  13. Felice KJ (1997) A longitudinal study comparing thenar motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve 20(2):179–185CrossRefPubMedGoogle Scholar
  14. Fischer LR, Culver DG, Tennant P et al (2003) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240CrossRefGoogle Scholar
  15. Fischer LR, Culver DG, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidance in mice and man. Exp Neurol 185(2):232–240Google Scholar
  16. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20:2534–2542PubMedGoogle Scholar
  17. Fryer HJ, Wolf DH, Knox RJ et al (2000) Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultured embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 74:582–595CrossRefPubMedGoogle Scholar
  18. Gordon T, Thomas CK, Munson JB, Stein RB (2004) The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 89:645–661CrossRefGoogle Scholar
  19. Gruzman A, Wood WL, Alpert E et al (2007) Common molecular signature in SOD-1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:12524–9CrossRefPubMedGoogle Scholar
  20. Hayworth CR, Gonzales-Lima F (2009) Pre-symptomatic detection of chronic motor deficits genotype prediction in congenic B6.SOD1G93A ALS mouse model. Neuroscience 164:975–85CrossRefPubMedGoogle Scholar
  21. Hegedus J, Putman CT, Gordon T (2007) Time course of preferential motor unit loss in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28:154–164CrossRefPubMedGoogle Scholar
  22. Henneman E, Mendell LM (1981) Functional organization of the motor neuron pool and its inputs in the nervous system: motor control part 1, sect. 1. vol. 2, Brooks, VB (ed). American Physiology Society, Washington, DC. pp 345–442.Google Scholar
  23. Hu P, Kalb RG (2003) BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 84:1421–1430CrossRefPubMedGoogle Scholar
  24. Ilieva EV, Ayala V, Jové M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–23CrossRefPubMedGoogle Scholar
  25. Jokic N, Gonzales de Aguilar JL, Pardat PF et al (2005) Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity. Ann Neurol 57:553–556CrossRefPubMedGoogle Scholar
  26. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842CrossRefPubMedGoogle Scholar
  27. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neuroscience 18:3241–3250Google Scholar
  28. Lambrechts D, Carmeliet P (2006) VEGF in the neurovasculat interface: therapeutic implication for motor neuron disease. Biochim Biophys Acta 1762:1109–1121PubMedGoogle Scholar
  29. LaMonte BH, Wallace KE, Holloway BA et al (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727CrossRefPubMedGoogle Scholar
  30. Lev N, Ickowicz D, Barhum Y, Melamed E, Offen D (2009) DJ-1 changes in G93A-SOD1 transgenic mice: Implications for oxidative stress in ALS. J Mol Neurosci 38:94–102CrossRefPubMedGoogle Scholar
  31. Li W, Brakefield D, Pan Y, Hunter D, Myckatyn TM, Parsadanian A (2007) Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp Neurol 203:457–471CrossRefPubMedGoogle Scholar
  32. Lu l, Zheng L, Viera L et al (2007) Mutant Cu/Zn- superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 27:7929–7938CrossRefPubMedGoogle Scholar
  33. Mohajeri H, Figlewicz D, Bohn M (1999) Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 10:1853–1866CrossRefPubMedGoogle Scholar
  34. Mousavi K, Parrav D, Lasmin B (2004) BDNF rescue myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am J Physiol Cell Physiol 287:C22–9CrossRefPubMedGoogle Scholar
  35. Musarò A, McCullagh K, Paul A et al (2001) Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200CrossRefPubMedGoogle Scholar
  36. Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G (2009) Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. J Mol Neurosci 38:85–93CrossRefPubMedGoogle Scholar
  37. Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the hypoxia- response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138CrossRefPubMedGoogle Scholar
  38. Ozdinler H, Macklis J (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371–1381CrossRefPubMedGoogle Scholar
  39. Park KHJ, Vincent I (2008) Presymptomatic biochemical changes in hind limb muscle of G93A human Cu/Zn superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Biochim Biophys acta 1782:462–468PubMedGoogle Scholar
  40. Parkhouse WS, Cunningham L, Mcfee I et al (2008) Neuromuscular dysfunction in the mutant superoxide dismutase mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:24–34CrossRefPubMedGoogle Scholar
  41. Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobil 19:263–274CrossRefGoogle Scholar
  42. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419CrossRefPubMedGoogle Scholar
  43. Rabinovsky ED, Gelir E, Gelir S et al (2003) Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J 17:53–55PubMedGoogle Scholar
  44. Rotestein JD, Jin L, Dykes-Hoberg M, Kunel RW (1993) Chronic inhibition of gloutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595CrossRefGoogle Scholar
  45. Sagot Y, Vejsada R, Kato A (1997) Clinical and molecular aspects of motoneuron diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein. Trends Pharmacol Sci 18:330–337PubMedGoogle Scholar
  46. Sakowski SA, Schuyler AD, Feldman EL (2009) Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:63–73CrossRefPubMedGoogle Scholar
  47. Schmidt ERE, Pasterkamp RJ, Van den Berg LH (2009) Axon guidance proteins: novel therapeutic targets for ALS? Prog Neurobiol 88:286–301CrossRefPubMedGoogle Scholar
  48. Séverine B, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59CrossRefGoogle Scholar
  49. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neuron disease. J Neurol Neurosurgery Psychiatry 76:1046–1057CrossRefGoogle Scholar
  50. Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motornerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39:203–216CrossRefPubMedGoogle Scholar
  51. Storkebaum E, Lambrechts D, Dewerchin M et al (2005) Treatment of motoneuron degeneration by intracerbroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92CrossRefPubMedGoogle Scholar
  52. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD-1-mediated familial ALS. Prog Neurobiol 85:94–134CrossRefPubMedGoogle Scholar
  53. Wang Y, Mao XO, Xie L et al (2007) Vascular endothelial growth factor overexpression delays neurodegeneraion and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27:304–307CrossRefPubMedGoogle Scholar
  54. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS- linked SOD1 mutant to motor neurons. Nat Neurosci 2:50–56CrossRefPubMedGoogle Scholar
  55. Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee TM (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315CrossRefPubMedGoogle Scholar
  56. Zheng C, Skold MK, Li J, Nennesmo I, Fadeel B, Henter JI (2007) VEGF reduces astryogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochem Biophys Res Commun 363:989–993CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michal Dadon-Nachum
    • 1
    • 2
  • Eldad Melamed
    • 1
    • 2
  • Daniel Offen
    • 1
    • 2
  1. 1.The Neuroscience Laboratory, Felsenstein Medical Research CenterRabin Medical CenterPetah TikvaIsrael
  2. 2.Sackler School of MedicineTel-Aviv UniversityTel AvivIsrael

Personalised recommendations