Journal of Molecular Neuroscience

, Volume 43, Issue 3, pp 376–390 | Cite as

JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities

  • Sidharth Mehan
  • Harikesh Meena
  • Deepak Sharma
  • Rameshwar Sankhla


The c-Jun N-terminal kinase (JNKs), also known as stress-activated protein kinase (SAPK), is one such family of multifunctional-signaling molecules, activated in response to wide range of cellular stresses as well as in response to inflammatory mediators. JNKs regulate various processes such as brain development, repair, and memory formation; but on the other hand, JNKs are potent effectors of neuroinflammation and neuronal death. A large body of evidence indicates that JNK activity is critical for normal immune and inflammatory response. Indeed, aberrant activation of JNK has been implicated in the pathogenesis of Alzheimer’s disease. Moreover, the JNK pathway is considered to be a key regulator of various inflammatory pathways which are activated during normal aging and Alzheimer’s disease therapy as well as key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of these pathway potential targets for the treatment of autoimmune and inflammatory diseases. Pharmacological inhibition of JNK has been demonstrated to attenuate microglial activation and the release of neurotoxic chemicals including pro-inflammatory cytokines. In this review, we provide an overview on implications and therapeutic strategies of JNK in neurodegenerative disorders.


Alzheimer’s disease Neuroinflammation c-Jun N-terminal kinase 



Authors are thankful to Mr. S.N.Kachhwaha, the Chairman, G.D.Memorial College of Pharmacy, Jodhpur (Rajasthan) and Mr. Manish Kachhwaha, Director, G.D.Memorial College of Pharmacy, Jodhpur (Rajasthan) for invaluable support and encouragement. Authors also express their thankfulness to his late guide Prof. Manjeet Singh, Director Academics, ISF College of Pharmacy, Moga (Punjab) for always being with us.


  1. Alarcon-Vargas D, Ronai Z (2004) C-Jun-NH2 kinase (JNK) contributes to the regulation of c-My protein stability. J Biol Chem 279:5008–5016PubMedCrossRefGoogle Scholar
  2. Barry CE, Nolan Y, Clarke RM, Lynch A, Lynch MA (2005) Activation of c-Jun-terminal kinase is critical in mediating lipopolysachharide-induced changes in the rat hippocampus. J Neurochem 93:221–231PubMedCrossRefGoogle Scholar
  3. Becker EB, Bonni A (2006) Pinl mrdiates neural-specific activation of the mitochondrial apoptotic machinery. Neuron 49:655–662PubMedCrossRefGoogle Scholar
  4. Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326–329PubMedCrossRefGoogle Scholar
  5. Bendotti C, Tortarolo M, Borsello T (2006) Targeting stress activated protein kinases, JNK and p38, as new therapeutic apporoach for neurodegenerative diseases. Cent Nerv Syst Agents Med Chem 6:1–9Google Scholar
  6. Ben-Zvi A, Yagil Z, Hagalili Y, Klein H, Lerman O, Behre O (2006) Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signalling in embryonic DRG neurons. J Neurochem 96:585–597PubMedCrossRefGoogle Scholar
  7. Bevilaqua LR, Kerr DS, Medina JH, Izquierdo I, Cammarota M (2003) Inhibition of hippocampal jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. Eur J Neurosci 17:897–902PubMedCrossRefGoogle Scholar
  8. Bjorkblom B, Ostman N, Hongisto V, Komarovski V, Filen JJ, Nyman TA, Kallunki T, Courtney MJ, Coffey ET (2005) Constitutively active cytoplasmic c-Jun-N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci 25:6350–6361PubMedCrossRefGoogle Scholar
  9. Blass JP, Gibson GE, Sheu RK (2000) Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann NY Acad Sci 903:204–221PubMedCrossRefGoogle Scholar
  10. Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095PubMedCrossRefGoogle Scholar
  11. Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21:363–377PubMedCrossRefGoogle Scholar
  12. Brust TB, Cayabyab FS, Mac Vicar BA (2007) C-Jun-N-terminal kinase regulates A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacol 53:906–917CrossRefGoogle Scholar
  13. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phospho-rylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130PubMedCrossRefGoogle Scholar
  14. Carboni S, Hiver A, Szyndralewiez C, Gaillard P, Gotteland JP, Vitte PA (2004) AS601245 (1, 3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino[4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther 310:25–32PubMedCrossRefGoogle Scholar
  15. Carboni S, Boschert U, Gaillard P, Gotteland JP, Gillon JY, Vitte PA (2008) AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br J Pharmacol 153:157–163PubMedCrossRefGoogle Scholar
  16. Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4:521–533PubMedCrossRefGoogle Scholar
  17. Chen Z, Cobb MH (2006) Activation of MEKK1 by Rho GTPases. Method in Enzymology 406:468–478CrossRefGoogle Scholar
  18. Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Rev 49:1–21PubMedCrossRefGoogle Scholar
  19. Ciani L, Salinas PC (2007) c-Jun N-terminal kinase (JNK) cooperates with Gsk3-beta to regulate disheveled-mediated microtubule stability. BMC Cell Biol 8:27PubMedCrossRefGoogle Scholar
  20. Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ (2000) Dual roles for c-Jun-N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20:7602–7613PubMedGoogle Scholar
  21. Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) C-Jun-N-terminal protein kinase (JNK2/3) is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebral neurons. J Neurosci 22:4335–4345PubMedGoogle Scholar
  22. Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Exp Gerontol 42:10–21PubMedCrossRefGoogle Scholar
  23. Cole-Edwards KK, Musto AE, Bazan NG (2006) c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes. J Neurosci 26:8295–8304PubMedCrossRefGoogle Scholar
  24. Colombo A, Repici M, Pesaresi M, Santambrogio S, Forloni G, Borsello T (2007) The TAT-JNK inhibitor peptide interferes with beta amyloid protein stability. Cell Death Differ 14:1845–1848PubMedCrossRefGoogle Scholar
  25. Costello DA, Herron CE (2004) The role of c-Jun N-terminal kinase in the A beta-mediated impair-ment of LTP and regulation of synaptic transmission in the hippocampus. Neuropharmacology 46:655–662PubMedCrossRefGoogle Scholar
  26. Curran BP, Murray HJ, O’Connor JJ (2003) A role for c-Jun N-terminal kinase in the inhibition of long-term potentiation by interleukin-1beta and long-term depression in the rat dentate gyrus in vitro. Neuroscience 118:347–357PubMedCrossRefGoogle Scholar
  27. Dajas-Bailador F, Jones EV, Whitmarsh AJ (2008) The JIP1 scaffold protein regulates axonal develop-ment in cortical neurons. Curr Biol 18:221–226PubMedCrossRefGoogle Scholar
  28. Daniels RH, Hall PS, Bokoch GM (1998) Membrane targeting of p21-activated kinase1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 17:754–764PubMedCrossRefGoogle Scholar
  29. Davis RJ (1999) Signal transduction by the C-jun-N-terminal kinase. Biochem Soc Symp 64:1–12PubMedGoogle Scholar
  30. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252PubMedCrossRefGoogle Scholar
  31. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by uv light and Ha-Ras that binds and phosphorylates the c-jun activation domain. Cell 76:1025–1037PubMedCrossRefGoogle Scholar
  32. Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. Eur J Pharmacol 620:49–56PubMedCrossRefGoogle Scholar
  33. Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB (2007) Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest 117:236–245PubMedCrossRefGoogle Scholar
  34. Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, Greenberg ME, Sawyers CL, Davis RJ (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277:693–696PubMedCrossRefGoogle Scholar
  35. Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949PubMedCrossRefGoogle Scholar
  36. Eminel S, Roemer L, Waetzig V, Herdegen T (2008) C-Jun-N-terminal kinases trigger both degeneration and neurite outgrowth in primary hippocampal and cortical neurons. J Neurochem 104:957–969PubMedCrossRefGoogle Scholar
  37. Esneault E, Castagne V, Moser P, Bonny C, Bernaudin M (2008) D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience 152:308–320PubMedCrossRefGoogle Scholar
  38. Figueiredo C, Pais TF, Gomes JR, Chatterjee S (2008) Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107:73–85PubMedCrossRefGoogle Scholar
  39. Force T, Kuida K, Namchuk M, Parang K, Kyriakis JM (2004) Inhibitors of protein kinase signaling pathways. Circulation 109:1196–1205PubMedCrossRefGoogle Scholar
  40. Gallagher ED, Gutowski S, Sternweis PC, Cobb MH (2004) RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem 279:1872–1877PubMedCrossRefGoogle Scholar
  41. Gallo KA, Johnson GL (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathway. Cell Molecular Nature Reviews 3:663–672CrossRefGoogle Scholar
  42. Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F, Luo Y, Graham SH, Chen J (2005) Neuroprotection against focal ischemia brain injury by inhibition of C-Jun-N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Metab 25:694–712Google Scholar
  43. Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23:823–832PubMedCrossRefGoogle Scholar
  44. Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J Neurochem 27:37–42PubMedCrossRefGoogle Scholar
  45. Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer Disease. J Neural Transm 105:855–870PubMedCrossRefGoogle Scholar
  46. Grunblatt E, Petrisic MS, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770PubMedCrossRefGoogle Scholar
  47. Guan QH, Pie DS, Zhang QG, Hao ZB, Xu TL, Zhang GY (2005) The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-neuclear pathways. Brain Res 1035:51–59PubMedCrossRefGoogle Scholar
  48. Guo C, Whtimarsh AJ (2008) The beta-arrestin-2 scaffold protein promotes c-jun-N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283:15903–15911PubMedCrossRefGoogle Scholar
  49. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770PubMedGoogle Scholar
  50. Ha HY, Cho IH, Lee KW, Song JY, Kim KS, Yu YM, Lee JK (2005) The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 277:184–199PubMedCrossRefGoogle Scholar
  51. Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V (2009) Specific activities of individual C-Jun N-terminal kinase in the brain. Neurosci 161:951–959CrossRefGoogle Scholar
  52. Harding TC, Xue L, Bienemann A, Haywood D, Dickens M, Tolkovsky AM, Uney JB (2001) Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J Biol Chem 276:4531–4534PubMedCrossRefGoogle Scholar
  53. Harris CA, Johnson EM Jr (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:377754–377760Google Scholar
  54. Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I (2003) Involvement of c-Jun N-Terminal kinase in amyloid precursor protein-meiated neuronal cell death. J Neurochem 84:864–877PubMedCrossRefGoogle Scholar
  55. Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee JI, Park SY, Kim JH, Hwang KY, Hyun YL, Jeon YH, Ro S, Cho JM, Lee TG, Yang CH (2004) Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J 23:2185–2195PubMedCrossRefGoogle Scholar
  56. Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–390PubMedCrossRefGoogle Scholar
  57. Herdegen T, Waetzig V (2001) The JNK and p38 signal transduction following axotomy, restor. Neurol Neurosci 19:29–39Google Scholar
  58. Hidding U, Mielke K, Waetzig V, Brecht S, Hanisch U, Behrens A, Wagner E, Herdegen T (2002) The c-Jun N-terminal kinases in cerebral microglia: immunological functions in the brain. Biochem Pharmacol 64:781–788PubMedCrossRefGoogle Scholar
  59. Hirari S, Cuide F, Miyata T, Ogawa M, Kiyonari H, Suda Y, Aizawa S, Banba Y, Ohno S (2006) The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 26:11992–12002CrossRefGoogle Scholar
  60. Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY (2005) The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/AKT activation. Brain Res 1052:1–9PubMedCrossRefGoogle Scholar
  61. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670PubMedCrossRefGoogle Scholar
  62. Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 105:7534–7539PubMedCrossRefGoogle Scholar
  63. Jellinger KA (2006) Alzheimer 100-highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623PubMedCrossRefGoogle Scholar
  64. Johnson GL, Nakamura K (2007) The c-Jun kinase/stress activated pathway: regulation, function and role in human disease. Biochem Biophys Acta 1773:1341–1348PubMedCrossRefGoogle Scholar
  65. Kallunki T, Su B, Tsigelny I, Sluss H, Derijard B, Moore G, Dasvis R, Karin M (1994) JNK 2 contains a specificity-determined region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8:2996–3007PubMedCrossRefGoogle Scholar
  66. Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y (2005) Oxidative stress and the JNK pathway in diabetes. Curr Diab Rev 1:65–72CrossRefGoogle Scholar
  67. Katsuno M, Morishima-Kawashima M, Saito Y, Yamanouchi H, Ishiura S, Murayama S, Ihara Y (2005) Independent accumulations of tau and amyloid beta-protein in the human entorhinal cortex. Neurolo 64:687–692Google Scholar
  68. Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2003) The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 22:4190–5001PubMedCrossRefGoogle Scholar
  69. Kidd PM (2005) Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors and prospects for brain rebuilding using integrative management. Altern Med Rev 10:268–293PubMedGoogle Scholar
  70. Kita Y, Kimura KD, Kobayashi M, Ihara S, Kaibuchi K, Kuroda S, Ui M, Iba H, Konishi H, Kikkawa U, Nagata S, Fukui Y (1998) Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci 11:907–1115Google Scholar
  71. Kuan CY, Yang DD, Samanta-Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The JNK1 and JNK2 protein kinas are required for regional specific apoptosis during early brain development. Neuron 22:667–676PubMedCrossRefGoogle Scholar
  72. Kyriakis JM, Avruch J (1996) Protein kinase cascades activated by stress and inflammatiory cytokines. Bioessays 18:567–577PubMedCrossRefGoogle Scholar
  73. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch MF, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160PubMedCrossRefGoogle Scholar
  74. Lagalwar S, Angela L, Bongaarts G, Berry WR, Binder LI (2006) Formation of phospho-SAPK/JNK granules in the hippocampus is an early event in Alzheimer’s disease. J Neuropathol Exp Neurol 65:455–464PubMedCrossRefGoogle Scholar
  75. Lee DY, Oh YJ, Jin BK (2005) Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways. Glia 51:98–110PubMedCrossRefGoogle Scholar
  76. Levkovitz Y, Ben-Shushan G, Hershkovitz A, Isaac R, Gil-Ad I, Shvartman D, Ronen D, Weizman A, Zick Y (2007) Antidepressant induces cellular insulin resistance by activation of IRS-1 kinases. Mol Cell Neurosci 37:305–312CrossRefGoogle Scholar
  77. Li XM, Li CC, Yu SS, Chen JT, Sabapathy K, Ruan DY (2007) JNK1 contributes to metabotropic glutamate receptor-dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. Eur J Pharmacol 25:391–396Google Scholar
  78. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumour necrosis factor-a, interleukin-1b, and interferone-g stimulate g-secretase mediated cleavage of Amyloid Precursor Protein through a JNK-dependent MAPK pathway. J Biol Chem 279:49523–49532PubMedCrossRefGoogle Scholar
  79. Lindwall C, Kanje M (2005) The Janus role of c-Jun: cell death versus survival and regeneration of neonatal sympathetic and sensory neurons. Exp Neurol 196:184–194PubMedCrossRefGoogle Scholar
  80. Lindwall C, Dahlin L, Lundborg G, Kanje M (2004) Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Mol Cell Neurosci 27:267–279PubMedGoogle Scholar
  81. Liu F, Liang Z, Gong CX (2006) Hyperphosphorylation of tau and protein phosphatase in Alzheimer’s disease. Panminerva Med 48:97–108PubMedGoogle Scholar
  82. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 25:6329–6342PubMedCrossRefGoogle Scholar
  83. Maiese K, Chong ZZ (2004) Insight into oxidative stress and potential novel therapeutic target for Alzhiemer’s disease. Restor Neurol Neurosci 22:87–104PubMedGoogle Scholar
  84. Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold. Nature Reviews 2:554–565PubMedCrossRefGoogle Scholar
  85. Mason RP, Leeds PR, Jacob RF, Hough CJ, Zhang KG, Mason PE, Chuang DM (1999) Inhibition of excessive neuronal apoptosis by the calcium antagonist amlodipine and antioxidants in cerebellar granule cells. J Neurochem 72:1448–1456PubMedCrossRefGoogle Scholar
  86. Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C, Ching YP, Li M (2008) Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 151:771–779PubMedCrossRefGoogle Scholar
  87. Mehan S, Miishra D, Sankhla R, Singh M (2010) Mitogen activated protein kinase at the crossroads of Alzheimer’s diseases. Inter J Pharma Prof Res 1:52–60Google Scholar
  88. Moreira PI, Honda K, Liu Q, Alviev G, Oliveira CR, Santos MS, Zhu X, Smith A, Perry G (2005) Alzheimer’s disease and oxidative stress: the old problem remains unsolved. Curr MedChem–Cent Nerv Sys Agents 5:51–62Google Scholar
  89. Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveria CR (2009) An integrative review of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alz Dis 16:741–761Google Scholar
  90. Musti AM, Taylor M, Bohmann D (1997) Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275:400–402PubMedCrossRefGoogle Scholar
  91. Newbern J, Taylor A, Robinson M, Lively MO, Miligan CE (2007) c-Jun N-terminal kinase signaling regulates events associated with both health and degeneration in motoneurons. Neurosci 147:680–692CrossRefGoogle Scholar
  92. Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK (2006) Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicol 27:31–38CrossRefGoogle Scholar
  93. Oliva AA, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci 26:9462–9470PubMedCrossRefGoogle Scholar
  94. Parihar MS, Brewer GJ (2007) Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 292:8–23CrossRefGoogle Scholar
  95. Patel MS, Korotchkina LG (2006) Regulation of pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222PubMedCrossRefGoogle Scholar
  96. Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27:13635–13648PubMedCrossRefGoogle Scholar
  97. Pocivavsek A, Burns MP, Rebeck GW (2009) Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia 57:444–453PubMedCrossRefGoogle Scholar
  98. Precept (2007) Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69:1480–1490CrossRefGoogle Scholar
  99. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of C-jun mediated by MAP kinases. Nature 353:670–674PubMedCrossRefGoogle Scholar
  100. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EM Jr (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914PubMedCrossRefGoogle Scholar
  101. Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78:347–363PubMedCrossRefGoogle Scholar
  102. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105PubMedCrossRefGoogle Scholar
  103. Raivich G, Bohatschek M, Da Costa C, Iwata O, Galiano M, Hristova M, Nateri AS, Makwana M, Riera-Sans L, Wolfer DP, Lipp HP, Aguzzi A, Wagner EF, Behrens A (2004) The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43:57–67PubMedCrossRefGoogle Scholar
  104. Repici M, Mare L, Colombo A, Ploia C, Sclip C, Bonny C, Nicod P, Salmona M, Borsello T (2009) C-Jun-N-terminal kinase-bibding domain-dependent phosphorylation of mitogen-actvated protein kinase kinase 7 and balancing cross-talk between C-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neurosci 159:94–103CrossRefGoogle Scholar
  105. Riese U, Ziegler E, Hamburger M (2004) Militarinone A induces differentiation in PC12 cells via MAP and AKT Kinase signal transduction pathways. FEBS Lett 577:455–459PubMedCrossRefGoogle Scholar
  106. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through disheveled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42PubMedCrossRefGoogle Scholar
  107. Sabapathy K, Joohum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech of Devel 89:115–124CrossRefGoogle Scholar
  108. Sato S, Ito M, Ito T, Yoshioka K (2004) Scaffold protein JSAP1 is transported to growth cones of neuritis independent of JNK signaling pathways in PC12h cells. Genes 329:51–60Google Scholar
  109. Sato T, Torashima T, Sugihara K, Hirai H, Asano M, Yoshioka K (2008) The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling. Mol Cell Neurosci 39:569–578PubMedCrossRefGoogle Scholar
  110. Sharma M, Gupta YK (2002) Chronic treatment with resveratrol prevents intracerebro-ventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498PubMedCrossRefGoogle Scholar
  111. Shaw D, Wang SM, Villasenor AG, Tsing S, Walter D, Browner MF, Barnett J, Kuglstatter A (2008) The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. J Mol Biol 383:885–893PubMedCrossRefGoogle Scholar
  112. Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N (2008) Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. J Biol Chem 283:17721–17730PubMedCrossRefGoogle Scholar
  113. Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184:1043–1052PubMedCrossRefGoogle Scholar
  114. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serine 63 and 73. Nature 354:494–496PubMedCrossRefGoogle Scholar
  115. Smeal T, Binetruy B, Mercola D, Grover-Bardwick A, Heidecker G, Rapp UR, Karin M (1992) Oncoprotein mediated signaling cascade stimulates c-Jun activity by phosphorylation of serine 63 and 73. Mol And Cell Biol 12:3507–3513Google Scholar
  116. Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2002) Metabolic, metallic and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2:413–420CrossRefGoogle Scholar
  117. Soane L, Kahraman S, Kristian T, Fiskum G (2007) Mechanism of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85:3407–3415PubMedCrossRefGoogle Scholar
  118. Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of Donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 77:1–14PubMedCrossRefGoogle Scholar
  119. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78PubMedCrossRefGoogle Scholar
  120. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in lzheimer’s disease-is this type 3 diabetes? J Alz Dis 7:63–80Google Scholar
  121. Suckfuell M, Canis M, Strieth S, Scherer H, Haisch A (2007) Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Otolaryngol 127:938–942PubMedCrossRefGoogle Scholar
  122. Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E (2000) Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506–4514PubMedGoogle Scholar
  123. Suto R, Tominaga K, Mizuguchi H, Sasaki E, Higuchi K, Kim S, Iwao H, Arakawa T (2004) Dominant-negative mutant of c-jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther 11:187–193PubMedCrossRefGoogle Scholar
  124. Takatori A, Geth E, Chen L, Zhang L, Meller J, Xia Y (2008) Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development 135:23–32PubMedCrossRefGoogle Scholar
  125. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid betapeptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213:114–121PubMedCrossRefGoogle Scholar
  126. Tararuk T, Ostman N, Li W, Bjorkblom B, Padzik A, Zdrojewska J, Hongisto V, Herdegen T, Konopka W, Courtney MJ, Coffey ET (2006) JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 173:265–277PubMedCrossRefGoogle Scholar
  127. Thomas GM, Lin DT, Nuriya M, Huganir RL (2008) Rapid and bidirectional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO J 27:361–372PubMedCrossRefGoogle Scholar
  128. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Sience 288:870–874Google Scholar
  129. Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle by hydrogen peroxide: a key role of a-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979PubMedGoogle Scholar
  130. Varona-Santos JL, Pileggi A, Molano RD, Sanabria NY, Ijaz A, Atsushi M, Ichii H, Pastori RL, Inverardi L, Ricordi C, Fornoni A (2008) C-J-un-N-terminal kinase 1 is deleterious to the function and survival of murine islets. Diabetologia 51:2271–2280PubMedCrossRefGoogle Scholar
  131. Waetzig V, Herdegen T (2003) The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 24:238–249PubMedCrossRefGoogle Scholar
  132. Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs: multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80:84–97PubMedCrossRefGoogle Scholar
  133. Waetzig V, Herdegen T (2004) Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci Letters 361:64–67CrossRefGoogle Scholar
  134. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) C-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–346PubMedCrossRefGoogle Scholar
  135. Wang MJ, Jeng KCG, Kuo JS, Chen HL, Huang HY, Chen WF, Lin SZ (2004) C-Jun-N-terminal kinase and, to lesser extent, p38 mitogen-activated protein kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2 microglia. J Neuroimmunol 146:50–62PubMedCrossRefGoogle Scholar
  136. Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, Boot-Handford RP, Tournier C (2007a) Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol Cell Biol 27:7935–7946PubMedCrossRefGoogle Scholar
  137. Wang X, Destrument A, Tournier C (2007b) Physiological roles of MKK4 and MKK7: insight from animal models. Biochem Biophys Acta 1773:1349–1357PubMedCrossRefGoogle Scholar
  138. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149PubMedCrossRefGoogle Scholar
  139. Whitmarsh AJ (2006) The JIP family of MAPK scaffold proteins. Biochem Sco Trans 34:828–832CrossRefGoogle Scholar
  140. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180PubMedGoogle Scholar
  141. Wu J, Zhang X, Nauta HJ, Lin Q, Li J, Fang L (2008) JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation. Biochem Biophys Res Commun 376:781–786PubMedCrossRefGoogle Scholar
  142. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAPK kinase on apoptosis. Science 24:1326–1331CrossRefGoogle Scholar
  143. Xie X, Gu Y, Fox T, Coll JT, Fleming MA, Markland W, Caron PR, Wilson KP, Su MS (1998) Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6:983–991PubMedCrossRefGoogle Scholar
  144. Yamauchi J, Miyamoto Y, Murabe M, Fujiwara Y, Sanbe A, Fujita Y, Murase S, Tanoue A (2007) Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells. Exp Cell Res 313:1886–1896PubMedCrossRefGoogle Scholar
  145. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–70Google Scholar
  146. Yang JY, Moulin N, Van Bemmelen MX, Dubuis G, Tawadros T, Haefliger JA, Waeber G, Widmann C (2007a) Splice variant-specific stabilization of JNKs by IB1/JIP1. Cell Signal 19:2201–2207PubMedCrossRefGoogle Scholar
  147. Yang Y, Zhu X, Chen Y, Wang X, Chen R (2007b) p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicines-induced cortical neurons apoptosis. Eur J Pharmacol 576:26–33PubMedCrossRefGoogle Scholar
  148. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25:1149–1158PubMedCrossRefGoogle Scholar
  149. Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan ART, Zhang JH (2008) Inhibition of C-Jun-N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochir Suppl 104:27–31PubMedCrossRefGoogle Scholar
  150. Yoshida H, Hastie CJ, Mclauchlan H, Cohen P, Goedert M (2004) Phosphorylation of micro- tubule associated protein tau by isoforms of c-Jun-N-teminal kinase (JNK). J Neurochem 90:352–358PubMedCrossRefGoogle Scholar
  151. Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Crosstalk between PSD-95 and JIP1-mediated signaling modules: the mechanism of MLK3 activation in cerebral ischemia. Biochemistry 46:4006–4016PubMedCrossRefGoogle Scholar
  152. Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792:482–496PubMedGoogle Scholar
  153. Zhou Q, Lam PY, Han D, Cadenas E (2008) C-Jun-N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J Neurochem 104:325–335PubMedGoogle Scholar
  154. Zhou Q, Lam PY, Han D, Cadenas E (2009) Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS Lett 583:1132–1140PubMedCrossRefGoogle Scholar
  155. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001a) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the two hit hypothesis. Mech Ageing Dev 123:39–46PubMedCrossRefGoogle Scholar
  156. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001b) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441PubMedCrossRefGoogle Scholar
  157. Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP, Velamoor V, Auberson YP, Osten P, van Aelst L, Sheng M, Zhu JJ (2005) Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46:905–16Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sidharth Mehan
    • 1
  • Harikesh Meena
    • 2
  • Deepak Sharma
    • 3
  • Rameshwar Sankhla
    • 3
  1. 1.Department of Pharmacology, GD Memorial College of PharmacyJodhpurIndia
  2. 2.Department of Phamaceutics, GD Memorial College of PharmacyJodhpurIndia
  3. 3.Department of Pharmaceutical Chemistry, GD Memorial College of PharmacyJodhpurIndia

Personalised recommendations