Journal of Molecular Neuroscience

, Volume 43, Issue 3, pp 246–250 | Cite as

Variation in the Uric Acid Transporter Gene SLC2A9 and Its Association with AAO of Parkinson’s Disease

  • Maurizio F. Facheris
  • Andrew A. Hicks
  • Cosetta Minelli
  • Johann M. Hagenah
  • Vladimir Kostic
  • Susan Campbell
  • Caroline Hayward
  • Claudia B. Volpato
  • Cristian Pattaro
  • Veronique Vitart
  • Alan Wright
  • Harry Campbell
  • Christine Klein
  • Peter P. Pramstaller
Article

Abstract

Based on the observed inverse association between hyperuricemia and Parkinson’s disease (PD) risk, the natural antioxidant activity of uric acid has been suggested to play a protective role. SLC2A9 has been indicated as the most effective of all uric acid transporters, and SLC2A9 variants have been shown to influence circulating uric acid levels. With this study, we aimed to test the association between such SLC2A9 polymorphisms and age at onset (AAO) of PD. Variants rs733175, rs737267, rs1014290, and rs6449213 within SLC2A9 were genotyped in 664 PD individuals from three European centers. The effect of each polymorphism on AAO was estimated within each center using a linear regression model adjusted for gender and genotype at the other SNPs and assuming an additive genetic model. Results across centers were combined using inverse-variance weighted fixed-effect meta-analysis. The minor allele of rs1014290, previously shown to be associated with lower serum uric acid levels, was found to be associated with a lower AAO of PD (pooled estimate −4.56 years; 95% CI −8.13, −1.00; p = 0.012). The association remained significant after adjustment for multiple comparisons and was highly consistent across centers (heterogeneity, I2 0%). No gender differences were observed. Our study suggests that SLC2A9 genetic variants influence age of onset of Parkinson’s disease.

Keywords

Uric acid Glucose transporter Oxidative stress Parkinson’s disease age at onset 

References

  1. Becker BF, Reinholz N, Leipert B, Raschke P, Permanetter B, Gerlach E (1991) Role of uric acid as an endogenous radical scavenger and antioxidant. Chest 100:176S–181SPubMedGoogle Scholar
  2. Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M et al (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5:e197CrossRefPubMedGoogle Scholar
  3. Church WH, Ward VL (1994) Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect on dopamine oxidation. Brain Res Bull 33:419–425CrossRefPubMedGoogle Scholar
  4. Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961CrossRefPubMedGoogle Scholar
  5. Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S et al (2008) SLC2A9 influences uric acid concentrations with pronounced gender-specific effects. Nat Genet 40:430–436CrossRefPubMedGoogle Scholar
  6. Fedorova L, Fedorov A (2003) Introns in gene evolution. Genetica 118:123–131CrossRefPubMedGoogle Scholar
  7. Greene CS, Penrod NM, Williams SM, Moore JH (2009) Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 4:e56CrossRefGoogle Scholar
  8. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560CrossRefPubMedGoogle Scholar
  9. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184CrossRefPubMedGoogle Scholar
  10. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M et al (2009) Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5:e1000504CrossRefPubMedGoogle Scholar
  11. Kutzing MK, Firestein BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324:1–7CrossRefPubMedGoogle Scholar
  12. Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D et al (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 65:716–723CrossRefPubMedGoogle Scholar
  13. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maurizio F. Facheris
    • 1
    • 2
    • 3
  • Andrew A. Hicks
    • 1
    • 2
  • Cosetta Minelli
    • 1
    • 2
  • Johann M. Hagenah
    • 4
  • Vladimir Kostic
    • 5
  • Susan Campbell
    • 6
  • Caroline Hayward
    • 6
  • Claudia B. Volpato
    • 1
    • 2
  • Cristian Pattaro
    • 1
    • 2
  • Veronique Vitart
    • 6
  • Alan Wright
    • 6
  • Harry Campbell
    • 6
    • 7
  • Christine Klein
    • 4
  • Peter P. Pramstaller
    • 1
    • 2
    • 3
  1. 1.Institute of Genetic MedicineEuropean Academy Bozen/Bolzano (EURAC)BolzanoItaly
  2. 2.Institute of the University of LübeckLübeckGermany
  3. 3.Department of NeurologyCentral Hospital of BolzanoBolzanoItaly
  4. 4.Department of NeurologyUniversity of LübeckLübeckGermany
  5. 5.Department of NeurologyUniversity of BelgradeBelgradeSerbia
  6. 6.MRC Human Genetics Unit, IGMMWestern General HospitalEdinburghUK
  7. 7.Centre for Population Health SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations