Advertisement

Journal of Molecular Neuroscience

, Volume 41, Issue 1, pp 55–65 | Cite as

Neural Stem Cells and New Neurons in the Cerebral Cortex of Stroke-Prone Spontaneously Hypertensive Rats After Stroke

  • Tatsuki ItohEmail author
  • Takao Satou
  • Kumiko Takemori
  • Shigeo Hashimoto
  • Hiroyuki Ito
Article

Abstract

Stroke-prone spontaneously hypertensive rats (SHRSP) are the only animal model that suffers from spontaneous cerebral stroke. In this study, we investigated the appearance of neural stem cells (NSCs) and new neurons in the penumbra and the subventricular zone (SVZ) after cerebral stroke in SHRSP. SHRSP before cerebral stroke were intraperitoneally injected with 5-bromo-2’-deoxyuridine (BrdU). SHRSP were divided into acute and chronic phase groups after cerebral stroke. Brain sections from both groups were studied with cell-specific markers such as BrdU, a cell division and proliferation marker, sex-determining region Y-box 2, a marker of NSCs, nestin, an NSC and immature astrocyte marker, doublecortin, an immature new neuron marker, and neuron-specific nuclear protein, a marker of mature neurons. NSCs and new neurons appeared in the penumbra in the early stages after cerebral stroke, and these cells differentiated into mature neurons in the chronic phase. Furthermore, soon after being affected by a cerebral stroke, there were many new neurons and immature cells, which appear to be NSCs, in the ipsilateral SVZ. Immature cells and new neurons from the ipsilateral SVZ might migrate into the penumbra after cerebral stroke, and this is the first report of their observation after a spontaneous cerebral stroke.

Keywords

Neural stem cell SHRSP Nestin Doublecortin Stroke 

Notes

Acknowledgment

The authors thank Mari Machino for technical assistance.

References

  1. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963–970.CrossRefPubMedGoogle Scholar
  2. Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., & Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Research, 765, 283–290.CrossRefPubMedGoogle Scholar
  3. Brown, J. P., Couillard-Despres, S., Cooper-Kuhn, C. M., Winkler, J., Aigner, L., & Kuhn, H. G. (2003). Transient expression of doublecortin during adult neurogenesis. Journal of Comparative Neurology, 467, 1–10.CrossRefPubMedGoogle Scholar
  4. Chirumamilla, S., Sun, D., Bullock, M. R., & Colello, R. J. (2002). Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. Journal of Neurotrauma, 19, 693–703.CrossRefPubMedGoogle Scholar
  5. Cooper-Kuhn, C. M., & Kuhn, H. G. (2002). Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Research. Developmental Brain Research, 134, 13–21.CrossRefPubMedGoogle Scholar
  6. Couillard-Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N., et al. (2005). Doublecortin expression levels in adult brain reflect neurogenesis. European Journal of Neuroscience, 21, 1–14.CrossRefPubMedGoogle Scholar
  7. Dempsey, R. J., Sailor, K. A., Bowen, K. K., Tureyen, K., & Vemuganti, R. (2003). Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. Journal of Neurochemistry, 87, 586–597.CrossRefPubMedGoogle Scholar
  8. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–716.CrossRefPubMedGoogle Scholar
  9. Felszeghy, K., Banisadr, G., Rostene, W., Nyakas, C., & Haour, F. (2004). Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats. Neuroimmunomodulation, 11, 404–413.CrossRefPubMedGoogle Scholar
  10. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438.CrossRefPubMedGoogle Scholar
  11. Hainsworth, A. H., & Markus, H. S. (2008). Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. Journal of Cerebral Blood Flow and Metabolism, 28, 1877–1891.CrossRefPubMedGoogle Scholar
  12. Ishida, H., Takemori, K., Dote, K., & Ito, H. (2006). Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood–brain barrier function. American Journal of Hypertension, 19, 33–39.CrossRefPubMedGoogle Scholar
  13. Itoh, T., Satou, T., Hashimoto, S., & Ito, H. (2005). Isolation of neural stem cells from damaged rat cerebral cortex after TBI. NeuroReport, 16, 1687–1691.CrossRefPubMedGoogle Scholar
  14. Itoh, T., Satou, T., Nishida, S., Hashimoto, S., & Ito, H. (2006). Cultured rat astrocytes give rise to neural stem cells. Neurochemical Research, 31, 1381–1387.CrossRefPubMedGoogle Scholar
  15. Itoh, T., Satou, T., Hashimoto, S., & Ito, H. (2007). Immature and mature neurons coexist among glial scars after rat traumatic brain injury. Neurological Research, 29, 734–742.CrossRefPubMedGoogle Scholar
  16. Itoh, T., Satou, T., Ishida, H., Nishida, S., Tsubaki, M., Hashimoto, S., et al. (2009). The relationship between SDF-1alpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurological Research, 31, 90–102.CrossRefPubMedGoogle Scholar
  17. Jurynec, M. J., Riley, C. P., Gupta, D. K., Nguyen, T. D., McKeon, R. J., & Buck, C. R. (2003). TIGR is upregulated in the chronic glial scar in response to central nervous system injury and inhibits neurite outgrowth. Molecular and Cellular Neurosciences, 23, 69–80.CrossRefPubMedGoogle Scholar
  18. Kawamata, T., Katayama, Y., Hovda, D. A., Yoshino, A., & Becker, D. P. (1995). Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Research, 674, 196–204.CrossRefPubMedGoogle Scholar
  19. Kokaia, Z., & Lindvall, O. (2003). Neurogenesis after ischaemic brain insults. Current Opinion in Neurobiology, 13, 127–132.CrossRefPubMedGoogle Scholar
  20. Komitova, M., Mattsson, B., Johansson, B. B., & Eriksson, P. S. (2005). Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke, 36, 1278–1282.CrossRefPubMedGoogle Scholar
  21. Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMedGoogle Scholar
  22. Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60, 585–595.CrossRefPubMedGoogle Scholar
  23. Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264, 1145–1148.CrossRefPubMedGoogle Scholar
  24. McKay, R. (1997). Stem cells in the central nervous system. Science, 276, 66–71.CrossRefPubMedGoogle Scholar
  25. Moon, C., Ahn, M., Kim, S., Jin, J. K., Sim, K. B., Kim, H. M., et al. (2004). Temporal patterns of the embryonic intermediate filaments nestin and vimentin expression in the cerebral cortex of adult rats after cryoinjury. Brain Research, 1028, 238–242.CrossRefPubMedGoogle Scholar
  26. Nakamura, T., Miyamoto, O., Auer, R. N., Nagao, S., & Itano, T. (2004). Delayed precursor cell markers expression in hippocampus following cold-induced cortical injury in mice. Journal of Neurotrauma, 21, 1747–1755.CrossRefPubMedGoogle Scholar
  27. Okano, H. (2002). Stem cell biology of the central nervous system. Journal of Neuroscience Research, 69, 698–707.CrossRefPubMedGoogle Scholar
  28. Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.PubMedGoogle Scholar
  29. Pekny, M., & Nilsson, M. (2005). Astrocyte activation and reactive gliosis. Glia, 50, 427–434.CrossRefPubMedGoogle Scholar
  30. Picard-Riera, N., Nait-Oumesmar, B., & Baron-Van, E. A. (2004). Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. Journal of Neuroscience Research, 76, 223–231.CrossRefPubMedGoogle Scholar
  31. Rice, A. C., Khaldi, A., Harvey, H. B., Salman, N. J., White, F., Fillmore, H., et al. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183, 406–417.CrossRefPubMedGoogle Scholar
  32. Sahin, K. S., Mahmood, A., Li, Y., Yavuz, E., & Chopp, M. (1999). Expression of nestin after traumatic brain injury in rat brain. Brain Research, 840, 153–157.CrossRefGoogle Scholar
  33. Salman, H., Ghosh, P., & Kernie, S. G. (2004). Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice. Journal of Neurotrauma, 21, 283–292.CrossRefPubMedGoogle Scholar
  34. Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427, 740–744.CrossRefPubMedGoogle Scholar
  35. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., & Alvarez-Buylla, A. (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. Journal of Neuroscience, 21, 7153–7160.PubMedGoogle Scholar
  36. Shibuya, S., Miyamoto, O., Auer, R. N., Itano, T., Mori, S., & Norimatsu, H. (2002). Embryonic intermediate filament, nestin, expression following traumatic spinal cord injury in adult rats. Neuroscience, 114, 905–916.PubMedGoogle Scholar
  37. Stumm, R. K., Rummel, J., Junker, V., Culmsee, C., Pfeiffer, M., Krieglstein, J., et al. (2002). A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. Journal of Neuroscience, 22, 5865–5878.PubMedGoogle Scholar
  38. Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., et al. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells, 24, 739–747.CrossRefPubMedGoogle Scholar
  39. Xiong, Y., Gu, Q., Peterson, P. L., Muizelaar, J. P., & Lee, C. P. (1997). Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. Journal of Neurotrauma, 14, 23–34.CrossRefPubMedGoogle Scholar
  40. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Tatsuki Itoh
    • 1
    Email author
  • Takao Satou
    • 1
    • 2
    • 3
  • Kumiko Takemori
    • 1
  • Shigeo Hashimoto
    • 4
  • Hiroyuki Ito
    • 1
  1. 1.Department of PathologyKinki University School of MedicineOsakasayamaJapan
  2. 2.Division of Hospital PathologyHospital of Kinki University School of MedicineOsakaJapan
  3. 3.Division of Sports Medicine, Institute of Life ScienceKinki UniversityOsakaJapan
  4. 4.Division of PathologyPL HospitalOsakaJapan

Personalised recommendations